검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        22.
        2006.04 구독 인증기관·개인회원 무료
        Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and . The direct reduction and carburization of the mixed powders were carried at for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.
        24.
        2006.04 구독 인증기관·개인회원 무료
        WC/WC interface in VC mono-doped WC-10mass%Co submicro-grained hardmetals of was investigated together with WC/Co interface by using HRTEM and XMA. The thickness of V-rich layer and the analytical value of V at WC/WC interface were almost the same as those at WC/Co interfaces. These results, etc., suggested that the V-rich layers at both interfaces were not generated by an equilibrium segregation mechanism in the sintering stage, but generated by a preferential precipitation mechanism during the solidification of Co liquid phase in the cooling stage. Based on this suggestion, we succeeded in developing a nano-grained hardmetal with 100 nm .
        25.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanopowders of titanium dioxide incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped nanopowders incorporating Fe-Zn. The transition element incorporated in the was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped nanopowder showed light absorption over more wide wavelength range than the single-doped nanopowders
        4,000원
        27.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.
        4,000원
        28.
        1998.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        P가 고농도로 도핑된 다결정 Si 기판 위에 Co/Ti 이중층막을 스퍼터 증착하고 급속열처리함으로써 얻어지는 실리사이드 층구조, 실리사이드막의 응집, 그리고 도펀트의 재분포 등을 단결정 Si 기판 위에서의 그것들과 비교하여 조사하였다. 다결정 Si 기판위에 형성한 Co/Si 이중층을 열처리할 때 단결정 기판에서의 경우보다 CoSi2로의 상천이는 약간 더 낮은 온도에서 시작되며, 막의 응집은 더 심하게 일어난다. 또한, 다결정 Si 기판내의 도펀트보다 웨이퍼 표면을 통하여 바깥으로 outdiffusion 함으로써 소실되는 양이 훨씬 더 많다. 이러한 차이는 다결정 Si 내에서의 결정립계 확산과 고농도의 도펀트에 기인한다. Co/Ti/doped-polycrystalline si의 실리사이드화 열처리후의 층구조는 polycrystalline CoSi2/polycrystalline Si 으로서 Co/Ti(100)Si을 열처리한 경우의 층구조인 Co-Ti-Si/epi-CoSi2/(100)Si 과는 달리 Co-Ti-Si층이 사라진다.
        4,000원
        29.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        To date, carbon and nitrogen co-doped photocatalysts (CN-TiO2) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-TiO2 photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-TiO2 photocatalytic system were higher than those of the TiO2 system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L min-1, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-TiO2 photocatalytic technology to purification of indoor air BTEX.
        1 2