검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        21.
        2012.06 구독 인증기관 무료, 개인회원 유료
        4'-formylbenzo-15-crown-5와 RHD, RED의 반응에 의해 새로운 두 종류의 크라운 에테르 RHDC 와REDC를 합성하였다. RHD, RED는 로다민 6G와 hydrazine, ethylenediamine을 이용하여 합성하였다.합성된 화합물들에 여러 가지 금속 양이온을 첨가하여 선택적인 형광 인식 특성을 알아보고, 형광 센서로서의 가능성에 대해 검토하였다. 합성된 화합물의 금속 인식 특성을 형광스펙트럼으로 측정한 결과 형광이 증가하였으며 Fe3+ 대한 인식이 가장 좋았다.
        4,000원
        22.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated magnetite (Fe3O4-δ) was applied to reducing CO2 gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a CO2 removal process. One of the typical dry methods is CO2 decomposition using activated magnetite (Fe3O4-δ). Generally, Fe3O4-δ is manufactured by reduction of Fe3O4 by H2 gas. This process has an explosion risk. Therefore, a non-explosive process to make Fe3O4-δ was studied using FeC2O4·2H2O and N2. FeSO4·7H2O and (NH4)2C2O4·H2O were used as starting materials. So, α-FeC2O4·2H2O was synthesized by precipitation method. During the calcination process, FeC2O4·2H2O was decomposed to Fe3O4, CO, and CO2. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 m2/g to 9.32 m2/g. The densities of FeC2O4·2H2O and Fe3O4 were 2.28 g/cm3 and 5.2 g/cm3, respectively. Also, the Fe3O4 was reduced to Fe3O4-δ by CO. From the TGA results in air of the specimen that was calcined at 450˚C for three hours in N2 atmosphere, the δ-value of Fe3O4-δ was estimated. The δ-value of Fe3O4-δ was 0.3170 when the sample was heat treated at 400˚C for 3 hours and 0.6583 when the sample was heat treated at 450˚C for 3 hours. Fe3O4-δ was oxidized to Fe3O4 when Fe3O4-δ was reacted with CO2 because CO2 is decomposed to C and O2.
        4,000원
        23.
        2011.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of the precipitator (NaOH, NH4OH) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of Fe3(PO4)2, which is the precursor used for cathode material LiFePO4 in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine LiFePO4 was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml FeSO4(1M) and 100 ml H3PO4(1M). The concentration of the NaOH and NH4OH solution was 1 M. The reaction temperature (25˚C) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of Fe2+. Single phase Fe3(PO4)2 was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml NH4OH solutions were added. However, Fe3(PO4)2 and NH4FePO4 were formed when 250 and 300 ml NH4OH was added. The morphology of the Fe3(PO4)2 changed according to the pH. Plate-like lenticular shaped Fe3(PO4)2 formed in the acidic solution below pH 5 and plate-like rhombus shaped Fe3(PO4)2 formed around pH 9. For the NH4OH, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and NH4OH. It is believed that the formation mechanism of Fe3(PO4)2 is quite different between NaOH and NH4OH. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.
        4,000원
        24.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature (25˚C) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the Fe2+ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 emu.g-1) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 emu.g-1) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.
        4,000원
        25.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the electrochemical non-enzyme immunosensor has been developed for the determination of salmonella antigen, using inverse voltammetry. For the estimation of salmonella antigen concentration, the nanoparticles synthesized by microemulsion method were conjugated with salmonella antigen. Then, the immunocomplex between antibody immobilized on the transducer surface and antigen containing a magnetic nanoparticles was formed. From the linear relationship between the reduction peak current of Fe(III) and salmonella antigen concentration, it is suggested that the electrochemical non-enzyme biosensor is applicable to detect salmonella antigen in the concentration range of
        4,000원
        26.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The surface of magnetite () nanoparticles prepared by coprecipitation method was modified by carboxylic acid group of poly(3-thiophenacetic acid (3TA)) and meso-2,3-dimercaptosuccinic acid (DMSA). Then the lysozyme protein was immobilized on the carboxylic acid group of the modification of the magnetite nanoparticles. The magnetite nanoparticles are spherical and the particle size is approximately 10 nm. We measured quantitative dispersion state by dispersion stability analyzer for each nanoparticles with and without surface modification. The concentration of lysozyme on the modified magnetite nanoparticles was also investigated by a UV-Vis spectrometer and compared to that of magnetite nanoparticles without surface modification. The functionalized magnetite particles had higher enzymatic capacity and dispersion stability than non-functionalized magnetite nanoparticles
        4,000원
        29.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The spinel Fe3O4 powders were synthesized using 0.2 M-FeSO4·7H2O and 0.5 M-NaOH by oxidation in air and the spinel LiMn2O4 powders were synthesized at 480 ℃ for 12 h in air by a sol-gel method using manganese acetate and lithium hydroxide as starting materials. The synthesized LiMn2O4 powders were mixed at portion of 5, 10, 15 and 20 wt% of Fe3O4 powders using a ball-mill. The mixed catalysts were dried at room temperature for 24 hrs. The mixed catalysts were reduced by hydrogen gas at 350 ℃ for 2 h. The carbon dioxide decomposition rates of the mixed catalysts were 90% in all the mixed catalysts but the decomposition rate of carbon dioxide was increased with adding LiMn2O4 powders to Fe3O4 powders.
        4,000원
        30.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The spinel LiMn2O4 powders were synthesized at 480℃ for 12 h in air by a sol-gel method using manganese acetate and lithium hydroxide as starting material and the Fe3O4 powders were synthesized by the precipitation method using 0.2M-FeSO4·H2O and 0.5M-NaOH. The synthesized Fe3O4 powders were mixed at portion of 5, 10, 15 and 20 wt% about LiMn2O4 powders through ball-milling followed by drying at room temperature for 48 h in air. The mixed catalysts were reduced at 350℃ for 3 h by hydrogen and the decomposition rate of carbon dioxide was measured at 350℃ using the reduced catalysts. As the results of CO2 decomposition experiments, the decomposition rates of carbon dioxide were 85% in all catalysts but the initial decomposition rates of CO2 were slightly high in the case of the 5%-Fe3O4 added catalyst.
        4,000원
        31.
        2001.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe-28%Al(Fe3Al)과 Fe-28%Al-4%Cr(Fe3Al-4Cr) 금속간화합물을 대기중 1073, 1273, 1473k의 온도에서 최고 17일까지 장시간 산화시켰다. Fe3Al-4Cr의 산화저항은 근본적으로 Fe3Al과 거의 비슷하거나, 약간 우수하였다. Fe3Al 위에 형성된 산화물은 거의 순수한 α-AL2O3로만 구성되어 있었으며, Fe3Al-4Cr 위에 형성된 산화물은 약간의 Fe와 Cr 이온이 고용된 α-AL2O3로 구성되어 있었다. 외부산화막을 형성하기 위해 모재원소의 외부확산에 의해 산화물-모재 계면에는 Kirkendall 기공이 존재하였다. Fe3Al(-4Cr) 표면에 형성된 산화막은 1273k가지는 비교적 얇고 치밀하였으나, 1473k에서 산화막의 박리와 함께 상대적으로 큰 무게증가가 발생하였다.
        4,000원
        32.
        1993.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        침상의 괴타이트 합성조건을 구하고 Co/가스에 의한 침탄법으로 Fe3C 단상을 얻을 조건을 구하여 그 자기적 특성을 조사한 결과 침상의 괴타이트는 공기 유입량을 1500ml/min, 반응온도 50˚C의 조건하에서 교반속도 500rpm, pH 12.0 이상에서 이상적인 분말을 합성할 수 있었으며 교반속도가 증가할수록 미세하고 입도 분포도 좁고 균일하였다. 탄화반응은 유리탄소를 방지하기 위하여 CO가스와 N2가스를 1:2로 혼입하였으며 550˚C, 60min. 이상의 반응조건하에서 Fe3C단상의 포화자화값은 탄화반응 온도에 관계없이 100/emu/g으로 일정하였으며 보자력은 780 에서 400Oe까지, 각형비는 0.35에서 0.13까지 탄화잔응 온도가 증가할수록 감소하였다.
        4,000원
        33.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        에이니그마타이트(Na4(Fe2+,Ti,Fe3+)12(Fe3+,Si)12O40)는 Na가 풍부한 알칼리 화성암에 흔히 산출되는 광물이며, 분지 개방형 단쇄형 규산염광물로 분류된다. 3개의 산출이 다른 자연산 에이니그마타이트를 대상으로 뫼스바우어 분광분석을 실시하였으며 상세한 결정화학적 연구가 수행되었다. 뫼스바우어 분광분석 결과 9개의 흡수선이 분리되었는데, 3쌍의 흡수선은 팔면체 자리를 점유하는 Fe2+의 피크이며, 저속도 구간의 독립적인 2개의 흡수선과 대응하는 한 개의 중첩된 흡수선은 각각 사면체와 팔면체 자리의 Fe3+의 피크로 밝혀졌다. Fe2+와 Fe3+의 정확한 함량비에 의해 화학분석치가 재계산되었으며, Fe 양이온의 사면체 자리와 팔면체 자리에 대한 정확한 자리점유율로 상세한 결정화학적 정보를 제공하였다. 상당한 함량의 Fe3+/tet는 사면체 자리점유에 있어 Fe3+가 Al3+보다 우위를 보여준다. 결정화학적로 규명된 에이니그마타이트(AEN1)의 상세한 화학조성은 (Na3.97Ca0.03)(Ca0.11Mn0.59Fe2+8.07Ti2.07Mg0.70Fe3+0.43Al0.04)(Fe3+0.56Al0.18Si11.26)O40으로 밝혀졌다.
        1 2