검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 76

        21.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after N2 plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, N2 plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with N2 plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from Al2O3 to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface N2 plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.
        4,000원
        22.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Much attention has been paid to thermally conductive materials for efficient heat dissipation of electronic devices to maintain their functionality and to support lifetime span. Hexagonal boron nitride (h-BN), which has a high thermal conductivity, is one of the most suitable materials for thermally conductive composites. In this study, we synthesize h-BN nanocrystals by pyrolysis of cost-effective precursors, boric acid, and melamine. Through pyrolysis at 900oC and subsequent annealing at 1500oC, h-BN nanoparticles with diameters of ~80 nm are synthesized. We demonstrate that the addition of small amounts of Eu-containing salts during the preparation of melamine borate precursors significantly enhanced the crystallinity of h-BN. In particular, addition of Eu assists the growth of h-BN nanoplatelets with diameters up to ~200 nm. Polymer composites containing both spherical Al2O3 (70 vol%) and Eu-doped h-BN nanoparticles (4 vol%) show an enhanced thermal conductivity (λ ~ 1.72W/mK), which is larger than the thermal conductivity of polymer composites containing spherical Al2O3 (70 vol%) as the sole fillers (λ ~ 1.48W/mK).
        4,000원
        23.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nd-Fe-B permanent magnets have been used in a wide variety of applications because of their high magnetic flux density. So, demand for neodymium has been increasing in worldwide. In this study, an electrowinning process was performed in LiF-NdF3-Nd2O3 high temperature molten salts. However, a corrosion resistant material for use in the molten salt must be found for stable operation because of the harsh corrosion environment of the electrowinning process. Therefore, for this paper, boron nitride(BN), aluminum nitride(AlN), and silicon nitride(Si3N4) were selected as protective and structural materials in the high temperature electrolyte. To investigate the characteristics of BN, AlN, and Si3N4, in molten salts, materials were immersed in the molten salts for 24, 72, 120, and 192 hours. Also, surface condition and stability were investigated by SEM and EDS and corrosion products were calculated by HSC chemistry. As a result, among BN, AlN, and Si3N4, AlN was found to show the best protective material properties.
        4,000원
        25.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of machining technology has coincided with the recent development of a diverse amount of materials and tools. The developed materials largely consist of hardened steel for vehicle and the mechanical industry. The machining of the hardened steel is performed in a lathe and many kind of machining centers, but it is difficult to machine because its hardness is the most difficult-to-cut materials. Hard-turning is a kind of machining process which omits the final grinding process and replaces it with a single accurate cutting process. In this paper, the turning of SKD 11(HRC 58) was performed using the CBN tool in order to recognize the optimum process conditions. The cutting force, tool life and wear, surface roughness were measured. Examining the machining characteristics when cutting of high hardened steel, low cutting speed and high conveying speed were identified to be effective in cutting conditions of SKD 11. Tool life was most effective in the conditions with 65m/min of cutting speed and 0.193mm/rev of feedrate and approximately 0.5um of very good surface profile was acquired at 0.079mm/rev of feedrate. Therefore, when cutting with Low CBN tool, it could be considered to be sufficient in reducing the steps of precision machining or replacing the polishing
        4,000원
        29.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        C/SiC composites were prepared by boron nitride (BN)-assisted liquid silicon infiltration (LSI), and their anti-oxidation and mechanical properties were investigated. The microstructures, bulk densities, and porosities of the C/SiC composites demonstrated that the infiltration of liquid silicon into the composites improved them, because the layered-structure BN worked as a lubricant. Increasing the amount of BN improved the anti-oxidation of the prepared C/SiC composites. This synergistic effect was induced by the assistance of BN in the LSI. More thermally stable SiC was formed in the composite, and fewer pores were formed in the composite, which reduced inward oxygen diffusion. The mechanical strength of the composite increased up to the addition of 3% BN and decreased thereafter due to increased brittleness from the presence of more SiC in the composite. Based on the anti-oxidation and mechanical properties of the prepared composites, we concluded that improved anti-oxidation of C/SiC composites can be achieved through BN-assisted LSI, although there may be some degradation of the mechanical properties. The desired anti-oxidation and mechanical properties of the composite can be achieved by optimizing the BN-assisted LSI conditions.
        3,000원
        30.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.
        4,000원
        31.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent ceramics are used in new technology because of their excellent mechanical properties over glasses. Transparent ceramics are nowadays widely used in armor, laser windows, and in high temperature applications. Silicon nitride ceramics have excellent mechanical properties and if transparent silicon nitride is fabricated, it can be widely used. h-BN has a lubricating property and is ductile. Therefore, adding h-BN to silicon nitride ceramics gives a lubricating property and is also machinable. Translucent silicon nitride was fabricated by hot-press sintering (HPS) and 57% transmittance was observed in the near infrared region. A higher wt. % of h-BN in silicon nitride ceramics does not favor transparency. The optical, mechanical, and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio, and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO, and h-BN at 1850˚C. The composite contained from 0.25 to 2 wt. % BN powder with sintering aids (9% AlN + 3% MgO). A maximum transmittance of 57% was achieved for the 0.25 wt. % BN doped Si3N4 ceramics. Fracture toughness increased and wear volume and the friction coefficient decreased with an increase in BN content. The properties such as transmittance, density, hardness, and flexural strength decreased with an increase in content of h-BN in silicon nitride ceramics.
        4,000원
        32.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the system. Aluminum chloride () as the starting material was gasified in the heating chamber of . Aluminum chloride gas transported to the furnace in atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and , the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.
        4,000원
        33.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Colored tantalum oxy-nitride (TaON) and tantalum nitride () were synthesized by ammonolysis. Oxygen deficient tantalum oxides () were produced by a titration process, using a tantalum chloride () precursor. The stirring speed and the amount of were important factors for controling the crystallinity of tantalum oxides. The high crystallinity of tantalum oxides improved the degree of nitridation which was related to the color value. Synthesized powders were characterized by XRD, SEM, TEM and Colorimeter.
        4,000원
        34.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate a nitriding process of spent oxide fuel and the subsequent change in thermal properties after nitriding, simulated spent fuel powder was converted into a nitride pellet with simulated fission product elements through a carbothermic reduction process. Nitriding rate of simulated spent fuel was decreased with increasing of the amount of fission products. Contents of Ba and Sr in simulated spent fuel were decreased after the carbothermic reduction process. The thermal conductivity of the nitride pellet was decreased by an addition of fission product element but was higher than that of the oxide fuel containing fission product elements.
        4,000원
        35.
        2008.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The crystal structures and morphologies of precipitates in L10-ordered TiAl intermetallics containing nitrogen were investigated by transmission electron microscopy (TEM). Under aging at an approximate temperature of 1073 K after quenching from 1423 K, TiAl hardens appreciably due to the nitride precipitation. TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the L10-TiAl matrix, appear in the matrix preferentially at the dislocations. Selected area electron diffraction (SAED) pattern analyses showed that the needle-shaped precipitate is perovskite-type Ti3AlN (P-phase). The orientation relationship between the P-phase and the L10-TiAl matrix was found to be (001)p//(001)TiAl and [010]p//[010]TiAl. By aging at higher temperatures or for longer periods at 1073 K, plate-like precipitates of Ti2AlN (H-phase) with a hexagonal structure formed on the 111 planes of the L10-TiAl matrix. The orientation relationship between the Ti2AlN and the L10-TiAl matrix is (0001)H//(111)TiAl and H//TiAl.
        4,000원
        36.
        2007.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Chromium nitride (CrN) films were deposited on silicon substrate by RF magnetron sputtering assisted by inductive coupled nitrogen plasma without intentional substrate heating. Films were deposited with different levels of bombarding energy by nitrogen ions (N+) to investigate the influence of substrate bias voltage (Vb) on the growth of CrN thin films. XRD spectra showed that the crystallographic structure of CrN films was strongly affected by substrate bias voltage. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) results showed that surface roughness and grain size of the CrN films varied significantly with bias voltage. For - 80 Vb depositions, the CrN films showed bigger grain sizes than those of other bias voltage conditions. The lowest surface roughness of 0.15 nm was obtained from the CrN films deposited at .130 Vb.
        3,000원
        38.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.
        4,000원
        39.
        2006.09 구독 인증기관·개인회원 무료
        Various reactions and the in-situ formation of new phases can occur during the mechanical alloying process. In the present study, Al powders were strengthened by AlN, using the in-situ processing technique during mechanical alloying. Differential thermal analysis and X-ray diffraction studies were carried out in order to examine the formation behavior of AlN. It was found that the precursors of AlN were formed in the Al powders and transformed to AlN at temperatures above . The hot extrusion process was utilized to consolidate the composite powders. The microstructure of the extrusions was examined by SEM and TEM. In order to investigate the mechanical properties of the extrusions, compression tests and hardness measurements were carried out. It was found that the mechanical properties and the thermal stability of the Al/AlN composites were significantly greater than those of conventional Al matrix composites.
        1 2 3 4