검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 336

        27.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The biocarbon (SKPH) was obtained from Sargassum spp., and it was evaluated electrochemically as support for the CO2 reduction. The biocarbon was synthesized and activated with KOH, obtaining a high surface area (1600 m2 g− 1) due to the activation process. Graphitic carbon formation after pyrolysis was confirmed by Raman spectroscopy. The XRD results show that SKPH has an amorphous structure with peaks corresponding to typical amorphous carbonaceous materials. FTIR was used to determine the chemical structure of SKPH. The bands at 3426, 2981, 2851, and 1604 cm− 1 correspond to O–H, C-H, and C-O stretching vibrations, respectively. Then, it compares SKPH films with different carbon films using two electrolytic systems with and without charge transfer. The SKPH film showed a capacitive behavior in the KOH, H2SO4, and, KCl systems; in the acid medium, the presence of a redox couple associated with carbon functional groups was shown. Likewise, in the [Fe(CN)6]−3 and Cu(II) systems, the charge transfer process coupled with a capacitive behavior was described, and this effect is more noticeable in the [Fe(CN)6]−3 system. Electrodeposition of copper on SKPH film showed two stages Cu(NH 3)2+ 4 /Cu(NH 3)+ 2 and Cu(NH 3)+ 2 ∕Cu in ammonia media. Hydrogen formation and the activity of CO2 are observed on SKPH film and are favored by the carbon’s surface chemistry. Cu/SKPH electrocatalyst has a catalytic effect on electrochemical reduction of CO2 and inhibition of hydrogen formation. This study showed that the SKPH film electrode responds as a capacitive material that can be used as an electrode for energy storage or as metal support.
        4,900원
        28.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pitch-based activated carbon fibers (ACFs) were prepared from ethylene tar-derived pitches containing nickelocene (CNi) or nickel nitrate (NiN). The effects of different anions and contents of metal salts on the microstructure and surface chemical properties of fibers were investigated. The results revealed that Ni2+ from CNi mainly remained its pristine molecule in the organometal salt-derived pitch (OP-xCNi), while Ni2+ from NiN occurred complexation reaction with polycyclic aromatic hydrocarbons (PAHs) in the inorganic metal salt-derived pitch (IP-xNiN) due to the weaker binding ability between anions and Ni2+ of CNi than CNi. The XRD and SEM results confirmed that IP-3NiN-ACF contained Ni, NiO, Ni2O3 nanoparticles with different size distributions, while OP-3CNi-ACF only contained more uniformly distributed Ni nanoparticles with small size. Furthermore, OP-3.0CNi-ACF presented higher specific surface area of 1862 m2/ g and a pore volume of 1.69 cm3/ g than those of IP-3.0NiN-ACF due to the formation of pore structure during the in-situ catalytic activation of different metal nanoparticles. Therefore, this work further pointed out that the desired pore structure and surface chemistry of pitch-based ACFs could be obtained through regulating and controlling the interaction of anion species, metal cations and PAHs during the synthesis of pitch precursors.
        4,300원
        29.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구는 항균 기능을 갖춘 안경테의 필요성에 주목하여 고분자 물질인 Polyvinylpyrrolidone(PVP)을 사용하여 은 나노 입자를 합성하고, 금속 안경테 소재에 코팅하여 항균성과 코팅 특성을 평가해 보고자 한다. 방법 : 안정성이 높은 고분자 물질인 PVP를 환원제, 분산제, 안정제로 사용하고 합성 온도를 달리하여 은 나노 입자를 합성하였다. 합성한 시료의 특성은 UV-visible spectrophotometer, SEM, EDS를 사용하여 분석하였으 며 paper disk diffusion method로 항균성을 평가하였다. 합성한 은 나노콜로이드를 금속 안경테 소재인 티타 늄, 스테인리스스틸 기판에 코팅하고 코팅막의 특성과 항균성을 측정하였다. 결과 : PVP를 사용하여 합성한 시료 모두에서 은(Ag)이 검출되어 은 나노 입자의 생성을 확인할 수 있었다. 합성 온도에 따른 은 나노 입자의 크기는 차이를 보였으며 Escherichia coli, Pseudomonas aeruginosa, Aspergillus brasiliensis의 경우 45℃에서 합성한 은 나노콜로이드의 항균활성이 가장 크게 나타났다. 이를 금속 안경테 소재 기판에 코팅한 후 항균성을 확인한 결과 코팅막의 항균력을 확인할 수 있었다. 결론 : PVP를 사용하여 합성한 은 나노콜로이드를 금속 안경테 소재 기판에 코팅한 결과 코팅막의 항균성이 확인되어 항균 기능을 가진 안경테 제작 시 항균 물질로 활용될 수 있을 것이라 사료된다.
        4,500원
        30.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the behaviour of carbon black (CB) nanoparticles (spherical carbon shells), subjected to external pressure, using diamond anvil cell at synchrotron facility. CB nanoparticles have been synthesized by lamp black method using olive oil as combustion precursor and ferrocene as an organometallic additive. The catalyst-assisted CB has an iron oxide (γ-Fe2O3) core and amorphous carbon shell (i.e. core–shell structure). Our present study suggests that the carbon shells are partially transparent to the applied high pressure, and result in the reduction of effective pressure that gets transferred to the iron oxide core. High-pressure Raman spectroscopy results indicate that the surrounding carbon shells get compressed with pressure and this change is reversible. However, no structural transformation was observed till the highest applied pressure (25 GPa). The Raman spectroscopy results also suggests that the carbon shells are less pressure sensitive as their pressure coefficients (dω/dP) of G-peak were calculated (3.79 cm− 1/GPa) to be less than that for other carbon allotropes.
        4,000원
        31.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pentachlorophenol (PCP), as one of the common pesticide and preservatives, is easily accumulated in living organisms. Considering the high toxicity of PCP, the development of an effective and sensitive inspection method to determine the residual trace amounts of PCP continues to be a significant challenge. Herein, a convenient and sensitive electrochemical sensor is constructed by modifying glassy carbon electrode with cerium dioxide ( CeO2) nanoparticles anchored graphene ( CeO2-GR) to detect trace PCP. Benefiting from the two-dimensional lamellar structural advantages, the extraordinary electron-transfer properties, as well as the intensive coupling effect between CeO2 nanoparticles and graphene, the afforded CeO2- GR electrode nanomaterial possesses excellent electrocatalytic activity for the oxidation of PCP. Under the optimum synthetic conditions, the PCP oxidation peak currents of developed CeO2– GR sample exhibit a wide linear range of 5–150 μM. Moreover, the corresponding detection limit of PCP on the CeO2– GR electrode is as low as 0.5 μM. Apart from providing a promising electrochemical sensor, this work, most importantly, promotes an efficient route for the construction of highly active sensing electrode materials.
        4,000원
        33.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1% to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.
        4,000원
        39.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effect of sulfation processes on the physicochemical properties of ZrO2 and TiO2 nanoparticles were thoroughly investigated. SO4/ZrO2 and SO4/TiO2 catalysts were synthesized to identify the acidity character of each. The wet impregnation method of ZrO2 and TiO2 nanoparticles was employed using H2SO4 with various concentrations of 0.5, 0.75, and 1 M, followed by calcination at 400, 500, and 600 °C to obtain optimum conditions of the catalyst synthesis process. The highest total acidity was found when using 1 M SO4/ZrO2-500 and 1 M SO4/TiO2-500 catalysts, with total acidity values of 2.642 and 6.920 mmol/ g, respectively. Sulfation increases titania particles via agglomeration. In contrast, sulfation did not practically change the size of zirconia particles. The sulfation process causes color of both catalyst particles to brighten due to the presence of sulfate. There was a decrease in surface area and pore volume of catalysts after sulfation; the materials’ mesoporous structural properties were confirmed. The 1 M SO4/ZrO2 and 1 M SO4/TiO2 catalysts calcined at 500 °C are the best candidate heterogeneous acid catalysts synthesized in thus work.
        4,000원
        40.
        2022.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.
        4,000원
        1 2 3 4 5