In the companion papers (I, II), site-specific response analyses were performed at more than 300 domestic sites and a new site classification system and design response spectra (DRS) were proposed using the results of the site-specific response analyses. In this paper, the proposed site classification system and the design response spectra are compared with those in other seismic codes and verified by different methods. Firstly, the design response spectra are compared with the design response spectra in Eurocode 8, KBC 2016 and MOCT 1997 to estimate quantitative differences and general trends. Secondly, site-specific response analyses are carried out using VS-profiles obtained using field seismic tests and the results are compared with the proposed DRS in order to reduce the uncertainty in using the SPT-N value in site-specific response analyses in the companion paper (I). In addition, site coefficients from real earthquake records measured in Korean peninsula are used to compare with the proposed site coefficients. Finally, dynamic centrifuge tests are also performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics. The overall results showed that the proposed site classification system and design response spectra reasonably represented the site amplification characteristic of shallow bedrock condition in Korea.
본 연구에서는 철골모멘트골조의 보-힌지 붕괴모드를 유도하는 최적 내진설계기법을 제안한다. 이는 유전자알고리즘을 사용하며, 기둥의 소성힌지 발생을 억제하는 제약조건을 설정하여 보-힌지 붕괴모드를 유도한다. 제안하는 기법은 구조물량를 최소화하고 에너지소산능력을 최대화하는 목적함수를 사용한다. 제안하는 기법은 9층 철골모멘트골조 예제 적용을 통해 검증한다. 예제 적용을 통해 철골모멘트골조의 보-힌지 붕괴모드를 유도하기 위해 요구되는 기둥-보 강도비를 평가한다. 패널존에 대한 3가지 모델링 기법을 각각 적용하여 모델링 조건에 따른 휨강도비 영향이 추가적으로 검토된다.
In the companion paper (I – Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock (VS,Soil) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of VS,Soil while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at VS,Soil equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients (Fv) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.
Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of SC, SD, and SE as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)
The objective of this study is to apply performance-based seismic design to high-rise apartment buildings in Korean considering collapse prevention level. The possible issues during its application were studied and the suggestions were made based on the findings from the performance-based seismic design of a building with typical residential multi-unit layout. The lateral-force-resisting system of the building is ordinary shear walls system with a code exception of height limit. In order to allow the exception, the serviceability and the stability of the ordinary shear wall structure need to be evaluated to confirm that it has the equivalent performance as the one designed under the Korean Building Code 2009. The structure was evaluated whether it satisfied its performance objectives to withstand Service Level and Maximum Considered Earthquake.
This study describes the seismic performance evaluation of bridge structures located in Daegu. Structure design criteria focuses on the collapse or brittle fracture of the bridges when the earthquake situation is given. Thus, this study describes the seismic safety evaluation based on the design of a spectrum of ASCE-7 KBC2009 of the United States, South Korea architectural structure was based on using 3D linear elastic finite element model using the ABAQUS platform bridges. If the target structure was found to be vulnerable to tensile stress than compressive stress appeared to be a case of displacement Z-axis displacement is dominant.
This study evaluates collapse probabilities of structures which are designed according to a domestic seismic design code, KBC2009. In evaluating their collapse probabilities, to do this, probabilistic distribution models for seismic hazard and structural capacity are required. In this paper, eight major cities in Korea are selected and the demand probabilistic distribution of each city is obtained from the uniform seismic hazard. The probabilistic distribution for the structural capacity is assumed to follow a underlying design philosophy implicitly defined in ASCE 7-10. With the assumptions, the structural collapse probability in 50 years is evaluated based on the concept of a risk integral. This paper then defines an mean value of the collapse probabilities in 50 years of the selected major cities as the target risk. Risk-targeted spectral accelerations are finally suggested by modifying a current mapped spectral acceleration to meet the target risk.
Recently, wind power has received attention as one of remarkable renewable energy resources, and worldwide researches about wind power are actively being proceeded. Wind turbine tower has a major role for safety in the wind turbine systems. It is necessary for design tower structure to consider various environmental conditions. Earthquake, as one of the such environmental loads, is ground motion that applied to bottom of the tower structure and has a possibility of critical effect to the wind tower structure. There are various ways for seismic analysis, but design specifications that are in use do not suggest detailed method for seismic analysis. In this study, seismic responses are analyzed through different ways and the adequacy of seismic design methods is examined.
This paper reviews the current seismic design code and research for dynamic earth pressure on retaining structures. Domestic design codes do not clearly define the estimation of dynamic earth pressure and give different comments for seismic coefficient, wall inertia and distribution of dynamic earth pressure using Mononobe-Okabe method. AASHTO has been revised reflecting current research and aims for effective seismic design. Various design codes are analyzed to compare their performance and economic efficiency. The results are used to make improvement of current domestic seismic design code. Further, it is concluded that the experimental investigation is also needed to verify and improve domestic seismic code for dynamic earth pressure.
This study reviews the status and validity of seismic design criteria (SDC) for major facilities in Korea, which are composed of performance criteria and technical standard. Various facilities with different seismic design response spectra are analyzed to identify their seismic performance and necessity of eventual retrofit. The results are used to derive improvement directions of SDC. It is also concluded that the technical standard should be improved after the revision of the performance criteria.
Simple 3, 10, and 30-story buildings with a nonstructural element which is located at roof or near the middle of the building height are selected. Based on 2009 Korean Building Code, the seismic design force applied at the nonstructural element is evaluated. Response spectrum analysis is conducted with the design response acceleration spectrum of 2009 Korean Building Code and the analytical response is compared with the seismic design force from the Code. Furthermore, an artificial earthquake based on Korean design response acceleration spectrum and the 50% intensity of El Centro earthquake, which can be considered as the maximum future earthquake possibly occurring in Korea, are selected to conduct time history analysis. When the period of the nonstructural element is shorter than 0.06 second or longer than that of the 1st period of each building, the Code equations of seismic design force for nonstructural element seems to be appropriate. However, the period of the nonstructural element is close to the one of the building's higher mode periods including the 1st period, seismic force of the nonstructural element might exceed the Code specified seismic design force.
수변 보 구조물의 내진설계는 ‘하천설계기준2009’에 따라 수행되어져야 하는데, 기본적인 내진설계 방법과 절차에 따르고 보 구조물은 기타 하천시설물로 구분되어 교량 설계기준이나 댐 설계기준을 준용할 수 있도록 규정하고 있다. 그리고 위에서 일반설계에서도 언급했듯이 보와 댐의 차이가 미미해지고 있어 댐 설계기준에 따라 적용해야 할 것으로 판단된다. 또한, 수변 보 구조물은 댐 설계기준에서 댐체, 여수로 및 부대시설물의 내진성능을 확보하기 위하여 필요한 기준을 규정하는 것으로서 신설되는 높이 15m 이상인 댐의 내진설계에 적용하고, 또한 높이 15m 미만인 소규모댐과 부대시설에 적용할 수 있다는 항목에 해당되는 것으로 보인다. 댐 설계는 “내진성능기준(1997)”에서 제시된 내진설계 성능기준을 기본으로 한다. 댐에 상당한 변형과 부분적손상이 발생하는 것은 허용할 수 있으나 지진시 또는 지진경과 후에도 댐의 저수기능은 유지되어야 하며 통제 불가능한 저수량의 유출상태는 있어서는 안 된다. 내진등급은 내진특등급 댐, 내진 I등급 댐2개의 등급으로 분류하나 고려하는 설계지진의 재현주기는 각각 1000년, 500년이어서 내진성능기준의 내진 I등급, 내진Ⅱ등급에 해당한다. 댐의 붕괴시 엄청난 인명피해와 재산피해를 고려할 때 내진등급을 내진특등급, 내진I등급으로 고려하는 것이 타당하나 댐의 거동특성으로 보아 완전한 소성설계를 할 수 없어 재현주기 2400년 지진에 대해 붕괴방지 수준으로 설계하는 것은 지나치게 지진하중을 크게 고려하게 된다. 따라서 이를 반영한 규정으로 생각할 수 있다. 지진하중은 설계진도로 산정하며 설계진도가 0.2g 이상이어서 우리나라보다 지진규모나 발생빈도가 훨씬 높은 나라에서 적용하는 진도보다 과다하다고 판단되는 경우에는 설계자는 적용설계진도를 0.2g이하로 조정할 수 있다.
The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure’s energy dissipation capacities.
본 연구는 최근 세계적으로 이상기후에 의하여 빈번히 발생하는 지진재해에 의한 주요시설물 피해저감 및 신속 복구에 대한 복합재료 적용에 관한 연구이다. 최근에 발생된 지진의 경우, 1차 지진에 의한 시설물 피해가 발생하 고 이후 강력한 규모의 2차, 3차 여진이 지속적으로 발생하고 있다. 이에 대응하기 위하여 국외에서는 병원, 방송국 등과 같은 주요시설물의 초기 지진피해에 의한 피해와 손상을 신속히 응급복구하고 향후 2차 여진 및 관련 시설물에 대한 항구적인 보강대책을 제공할 수 있는 내진안전성 개선연구가 활발히 진행되고 있다. 본 연구는 기존 건설 재료인 콘크리트와 강재의 경우 실제 지진재해 발생 시 기존시설물의 손상에 따른 응급복구용 재료로써 구조체 제작 및 시공에 다소 애로사항이 많다는 점을 착안, 저 중량 고강도 및 시공이 상대적으로 용이한 복합재료를 이용, 응급복구용 구조체로 제작하여 활용하는 방안을 제안하였다. 본 연구에서 제시한 긴급복구용 GFRP-파형강판 합성형 내력패널의 경우, 기존 콘크리트 또는 강 프레임 구조물 내 지진에 의한 벽체손상 피해 시 이들 손상된 벽체(조적조 또는 콘크리트 벽체)를 제거한 후 사전 제작된 GFRP- 파형강판 합성형 내력벽체를 적용, 대체 횡적 보강구조체로 신속 시공함으로써 향후 피해저감 및 응급복구용으로 그 효율성을 극대화하고 예방하는 내진공법을 개발하고자 한다. 연구에서 제안된 GFRP-파형강판 합성형 내력패널 의 경우, 상용 유한요소해석프로그램인 ABAQUS를 활용하여 3차원 해석모델링을 통하여 설계하며, 내력패널 내 구성요소의 경우 좌굴거동에 의한 파괴패턴을 기준으로 형상 및 재원을 결정하였다.
본 연구는 최근 세계적으로 이상기후에 의하여 빈번히 발생하는 지진재해에 의한 주요시설물 피해저감 및 신속 복구에 대한 복합재료 적용에 관한 연구이다. 최근에 발생된 지진의 경우, 1차 지진에 의한 시설물 피해가 발생하고 이후 강력한 규모의 2차, 3차 여진이 지속적으로 발생하고 있다. 이에 대응하기 위하여 국외에서는 병원, 방송국 등과 같은 주요시설물의 초기 지진피해에 의한 피해와 손상을 신속히 응급복구하고 향후 2차 여진 및 관련 시설물에 대한 항구적인 보강대책을 제공할 수 있는 내진안전성 개선연구가 활발히 진행되고 있다. 본 연구는 기존 건설 재료인 콘크리트와 강재의 경우 실제 지진재해 발생 시 기존시설물의 손상에 따른 응급복구용 재료로써 구조체 제작 및 시공에 다소 애로사항이 많다는 점을 착안, 저 중량 고강도 및 시공이 상대적으로 용이한 복합재료를 이용, 응급복구용 구조체로 제작하여 활용하는 방안을 제안하였다. 본 연구에서는 자유로운 전단 변형을 일으키는 에너지 소산층을 두어 에너지를 흡수하는 에너지 흡수형 GFRP 내력패널의 역학적 알고리즘을 제시하고 2차원 해석모델링은 통하여 그 가능성을 검증하였다.
비정형 초고층 구조물은 골조 직교성이 해제되고, 형상이 복잡해 기존 설계방식보다 많은 문제점이 발생된다. 비정형성으로 인한 문제점은 설계안을 지속적으로 변경시켜 프로젝트의 효율성을 저하시킨다. 또한 해외프로젝트의 경우 해당업체 간혹은 해당국가 간 의견차로 국내보다 더욱 많은 변경상황이 발생되고 있다. 따라서 지속적인 변경상황에 전산플랫폼을 사용할 경우 효율적으로 설계변경업무에 대처할 수 있다. 파라메트릭 기반의 전산플랫폼인 StrAuto를 이용할 경우 최적의 구조 설계대안을 신속히 선정할 수 있다. 특히 StrAuto는 비선형 내진성능평가를 위한 해석 툴 간의 신속한 모델링 연동도 효율적으로 가능하다. 그래서 본 연구에서는 지진하중 변경에 따른 전산플랫폼을 이용한 내진성능평가 프로세스를 현재 구조설계가 진행 중인 몽골지역 최고층 빌딩 프로젝트에 적용하고 검증하려 한다.
일반교량은 상부구조, 연결부분, 하부구조 및 기초로 구성되어 있고 내진성능은 하부구조와 연결부분의 파괴메카니즘에 의해 결정된다. 그러므로 내진설계는 구조부재의 설계강도, 즉 설계단면을 결정하는 기본설계단계에서 수행되어야 한다. 도로교설계기준 내진설계편은 두 가지 기본설계 방식을 제시하고 있다. 첫째는 기존 설계방식으로 내진설계편이 제시한 응답 수정계수를 적용하는 방식이고 둘째는 새로 도입된 연성도 내진설계 방식으로 설계자가 응답수정계수를 결정하는 방식이다. 이 연구에서는 일반교량을 대상으로 두 설계방식을 같이 적용하는 기본설계를 수행하고 내진성능 확보의 관점에서 요구되는 보완사항을 제시하였다.
본 연구에서는 변위기반 성능설계 개념에 의해 기존 철근콘크리트 기둥과 콘크리트에 강재를 매입한 SRC 합성기둥에 대하여 최대 설계지진 가속도에 대한 내진성능개선의 성능설계을 비교하였다. SRC 합성기둥은 구조물의 강도를 증가시킬 뿐 아니라 연성도를 증가시키는 효과가 있다. SRC 합성기둥의 단면은 H형 강재와 원형의 중공 강관을 매입한 형태로 구성되어 있다. SRC 합성기둥에 대한 P-M상관도와 단면 공칭휨모멘트를 분석하고 이를 바탕으로 SRC 합성기둥에 대한 설계 변위 추정을 위해 변위기반 내진 설계 알고리즘을 제시하였다. 성능기반설계에 의한 성능개선설계를 위하여 목표성능변위 및 설계지진가속도 조건에 대해 직접변위 기반 설계방법 및 변위계수법에 의한 내진성능개선 설계 방법을 제시하였다. SRC 합성기둥은 기존 RC 기둥과 비교하여 성능개선 설계 결과 변위 연성비 및 변위성능에서 크게 개선된 성능설계 결과를 나타내었다.
The interest for the stability of the structures against earthquake, which is increasing recently, is rapidly increasing. But, currently, school buildings among the reinforced concrete(RC) structures in Korea are not designed with seismic design or there are many cases of being designed with the old seismic design code, so it is estimated to have not only lives but also a great deal of economic damage are likely to occur when an earthquake occurs. In this study, proposed horizontal friction system(HFS) with rotary friction damper installed as a method to reinforce strength and hardness and to increase ductility for the low story structure of 5 stories or lower such as school buildings. For the seismic retrofitting design with horizontal friction system in which rotary friction damper is installed, Peak displacement response ratio according to elastic and inelastic behavior and ductility demand is calculated to decide elastic stiffness and strength of the HFS, design model and procedure to decide the capacity of HFS thereof is decided, and the feasibility and performance are reviewed through pushover analysis.
본 연구는 인공지진파 및 기록 지진파를 이용하여, KBC2009 규준으로 설계된 강구조 건물의 거대 건물에 대한 내 력 여유도를 평가하는 것을 목표로 하고 있다. 이 논문에서는 검정에 있어서 콘크리트 슬래브로 층강성이 고정되어 있는 2-D 프레임을 고려하였고, 각각의 프레임을 구성하고 있는 보와 기둥 부재는 각 부재단에 소성힌지를 적용하 였다. 검정에 사용한 해석법은 응답 스펙트럼을 이용한 모드 해석과 기록 및 인공지진파를 이용한 시간이력해석을 선택하여 모델의 거동을 조사하였으며 해석에서는 P-delta 효과를 고려한다.