검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 138

        41.
        2018.04 구독 인증기관·개인회원 무료
        Optimization was performed on the static dynamic behavior of a simply supported laminated composite plate. Thickness optimization was performed with respect to Gr/E laminated composites with simultaneous mechanical load, thermal load and hygro-load. Displacement, fundamental frequency and composite damping were imposed as constraints for optimization. The results of the optimization were much better than those of the conventional methods.
        42.
        2018.04 구독 인증기관·개인회원 무료
        In this study, we investigated the shear properties of pultruded fiber reinforced polymer plastic (PFRP) composites. Especially, we focused on the relationship between the shear properties of PFRP and other mechanical properties of PFRP composites by comparing the experimental results with the theoretical results. We compared the shear characteristics obtained by the tensile test and calculated from the theoretical equation proposed in previous work. It was found that the shear modulus of elasticity predicted by using the theoretical formula is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
        44.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this paper is to clarify the structural stability of 30m fly(maximum working radius of 30m) and telescopic boom with composition. In order to reduce the weight and insulate, the boom of special vehicle has a 3-stage telescopic boom of DOMEX960, pocket part of acetal, 2-stage refracting boom of ATOS80, insulation boom of glass fiber composition and effector. In this process, CATIA is applied to create 3D modeling, then ANSYS are performed the structural analysis. The structural analysis is performed for a case where the thickness of the insulating boom of the ATOS 80 is 7[㎜] and the thickness of the insulating boom of the FRP material is 15[㎜] and 16[㎜].
        4,000원
        46.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서의 날개 앞전은 날개의 공기역학적인 기능뿐만 아니라 조류 등의 외부의 손상을 줄 수 있는 것으로부터 날개 내부 구성요소를 보호하고 안전한 항공기 운항을 위한 반드시 필요한 구조 요소이다. 복합재 무인기의 날개 경량화를 위한 최적의 제작 모델을 비교․검토하였다. MSC. Patran/Nastran을 이용한 유한요소해석을 통하여 비틀림 하중의 변위 형상을 비교․확인하였으며, 각 모델들의 비틀림 강도 실험을 통하여 적층 유형, 두께 변화 및 형상 적용에 따른 경량화 성능 개선 을 확인하므로써 소형 복합재 무인기 최적의 경량화 날개 앞전스킨의 형태를 제시하였다.
        4,000원
        47.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pultruded fiber reinforced polymer plastic (PFRP) is one of the most actively studied composite materials for the structural member in construction industries. In domestic design process, the PFRP member is designed as an isotropic material having only longitudinal material properties for simplicity, because it is too complex to consider orthotrophy of PFRP perfectly. In this study, three cases of buckling analysis of PFRP plate is conducted theoretically and numerically. First, the PFRP plate is considered as an orthotropic material. Second, the PFRP plate is considered as an isotropic plate having only longitudinal material properties. Third, the PFRP plate is considered as an isotropic plate having geometric mean of longitudinal and transverse material properties. As a result of buckling analysis, a buckling strength of PFRP plate as an isotropic plate having only longitudinal material properties is about 2.21 times larger than that of PFRP plate analyzed as an orthotropic plate. On the other hand, a buckling strength of PFRP plate as an isotropic plate having geometric mean material properties is about 1.19 times larger than that of PFRP plate analyzed as an orthotropic plate. In conclusion, the safety factor of 3 used in domestic design process of PFRP member is no longer applicable due to overestimation of buckling strength of PFRP member which leads to nonconservative design.
        4,000원
        48.
        2017.09 구독 인증기관 무료, 개인회원 유료
        고성능 복합재료는 기존의 소재에 비해 우수한 기계적 물성을 보이며 특히 높은 비강도를 보인다. 복합재료 의 매트릭스로 사용되는 에폭시 수지는 이들의 독특한 화학반응성, 경화반응에 사용되는 경화제의 적절한 조합으로 많은 다양한 특성을 보일 수 있다. 본고에서는 고성능 복합재 구조물 제작에 사용되어온 에폭시 수지 시스템을 소개 하고자 한다. 필라멘트 와인딩 공법에 사용되는 에폭시 수지와 프리프레그 제조에 사용되는 에폭시 수지의 조성과 특 성을 중심으로 설명하였다.
        4,000원
        49.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are a source of air pollution and are harmful to both human health and the environment. In this study, we fabricated polyurethane/rare earth (PU/RE) composite nanofibrous membranes via electrospinning with the aim of removing VOCs from air. The morphological structure of PU/RE nanofibrous mats were investigated using FE-SEM, EDX, and XRD experimental analyses. A certain amount of RE (up to 50 wt% compared to PU pellets) particles could be loaded on/into PU fibers. The PU nanofiber containing 50 wt% RE powder had the smallest fiber diameter of 356 nm; it also showed the highest VOCs absorption capacity compared with other composite membranes, having an absorption capacity about 3 times greater than pure PU nanofibers. In addition, all of the PU/RE nanofibrous membranes readily absorbed styrene the most, followed by xylene, toluene, benzene and chloroform. Therefore, the PU/RE nanofibrous membrane can play an important role in removing VOCs from the air, and its development prospects are impressive because they are emerging materials.
        4,000원
        50.
        2017.04 구독 인증기관·개인회원 무료
        A pultruded fiber reinforced polymer plastic (PFRP) structural member consisted of plate elements, which is commonly used as construction member, may be considered as an orthotropic material due to its unique manufacturing process. It has different mechanical properties with respect to the longitudinal and transverse directions. This orthotropic nature of PFRP material needs to be considered in the analysis of buckling behavior. In this paper, a simplified buckling analysis for PFRP plate using geometric mean of the longitudinal and transverse mechanical properties is performed. The comparison between exact buckling analysis and simplified buckling analysis is conducted. Each analysis is performed by the Levy method and the finite element method (FEM), respectively.
        51.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study describes the effects of polyurethane/loess powder (PU/LP) nanofiber thin films composite produced from electrospun for absorption volatile organic compounds (VOCs) from air. Environmental issue has become a focus with improving people's living quality. The VOCs are one of the factors that affect the environmental safety. So, in order to improve the environment and safety for people, many air cleaning techniques have been investigated. One of the methods is nanofiber filtration technology. In this study, the PU nanofiber thin film has been studied that it has the adsorption of VOCs capacity, and LP nanoparticles (NPs) can be used as an additive to load into PU nanofiber thin film by electrospinning. For studying PU/LP nanofiber thin films's absorption of VOCs capacity, 4 samples (0, 10, 30, and 50 wt% LP with respect to PU) were manufactured, respectively. The results show that PU composite mats containing 30 wt% LP NPs has the highest VOCs absorption capacity, and the adsorption capacity for toluene was the highest compared to benzene and chloroform.
        4,000원
        52.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.
        4,000원
        53.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.
        4,300원
        55.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When working on electrical wiring and cable, Electrically insulated aerial work platforms must be used to prevent the electrocution hazards. Aerial work platforms with composition boom is able to increase the weight and height of the workspace due to the lightweight of boom. The aim of this paper is to clarify structural stability of 3 stage telescopic booms having an operator platform and an upper boom of composition(Fiber Reinforced Plastic) by comparing the general telescopic booms with steel material using computational analysis.
        4,000원
        56.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of CNT-Polyamide composites were analyzed, that is, tensile strength, electrical resistivity, and thermal conductivity were measured according to the align length of CNT. There have been researches on the influence of aligned CNT to improve the mechanical and thermal characteristics in different areas including absorption and shielding of electromagnetic wave, thermal distribution or absorption, and high-strength of CNT. The aligned CNTs were synthesized by the ethylene gas with a CVD device preheated at 650℃. CNT-Polyamide composites were produced with the mixing of solution. CNT contents were controlled from 1phr to 50phr in the polyamide-ethanol solution, and blended with the 700W bar-type ultrasonic wave for 60 min.. And then CNT-polyamide were precipitated by CNT-polyamide-etnanol falling into the cold water. After dried 12 hours, CNT-polyamide composite were pressed at 150℃~180℃ with 400kgf to get the thickness of 1mm. As the conclusions, aligned CNT bundles were dispersed by cutting of CNT to the aligned direction because of polyamide properties. Tensile strength and electrical resistivity were improved to the increase of aligned length of CNT. Thermal conductivity was little affected by the align length of CNT.
        4,000원
        57.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of CNT diameters on properties of CNT-polyamide composites was investigated such as electrical conductivity, tensile strength and thermal conductivity. To get different diameter distributions of CNTs, several portions of Mo and Fe in Mo-Fe/MgO catalysts were synthesized by a combustion method at 600℃. And all CNTs growed at 900℃ with 3 SLM methane and 1 SLM hydrogen for 40min. Four kinds of CNTs with different diameter distributions, such as 1~3nm, 3~7nm, 7~13nm, and 10~30nm, were selected to make CNT-polyamide composites. Each composite was manufactured by a solution mixing using bar-type ultra-sonicator in the CNT portions from 1phr to 50phr. And electrical conductivity, tensile strength, and thermal conductivity were measured. Three properties of CNT-polyamide composite, manufactured with 10nm diameter, were more excellent compared to other composites, with electrical conductivity  Ω at 7phr, thermal conductivity 2.4.W/mK at 40phr, tensile strength 60MPa at 30phr. CNTs with a diameter of 10nm were superior to other diameters for the multi-functional composite such as CNT-polyamide composites.
        4,000원
        58.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the fracture property of impact absorption is investigated using the carbon fiber composite material. And this property is compared with the carbon fiber composite material with aluminum foam. Carbon fiber composite material has the high specific strength and rigidity and the superior durability and fatigue life and light weight. On the ground of these properties, this material has been used widely at the fields of airplane, national defence industry, vehicle and the various industrial areas. Aluminum foam can also be applied at the various areas as it is the material with the superior properties. And this foam is the material which can solve the problem on the light weight of particular product. At the condition of the impact energy of 20J, the maximum loads of CFRP sandwich composite and CFRP sandwich composite with aluminum foam core are shown to be 5.7 kN and 6.5 kN respectively. In case of maximum energies, these values are shown to be 19 J and 17.5 J respectively. At the impact energy of 50 J, the maximum loads of CFRP sandwich composite and CFRP sandwich composite with aluminum foam core are shown to be 7 kN and 8.8 kN respectively. In case of maximum energies, these values are shown to be 43 J and 48 J respectively. At the impact energy of 80 J, the maximum loads of CFRP sandwich composite and CFRP sandwich composite with aluminum foam core are shown to be 9.2 kN and 11 kN respectively. In case of maximum energies, these values are shown to be 70 J and 63 J respectively. As the result of this study, the mechanical properties are investigated through the impact experiments on the composites composed of the closed aluminum foam and the carbon fiber reinforced plastic used frequently as absorbents.
        4,000원
        59.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        복합재는 높은 비강도와 비강성을 가지고 있어 자동차, 항공기 등 전반적인 산업분야에서 널리 사용되는 재료이다. 우주선의 노즐 부분과 같이 높은 온도뿐만 아니라 높은 압력이 작용하는 환경에서 사용하기 위한 재료로 복합재가 필요하다. 복합재의 물성치를 아는 것은 매우 중요한데 모재(matrix)와 강화섬유(fiber) 각각의 물성치를 수치적으로 대입해 얻는 결과는 실험값과의 오차가 커 예측하는데 있어 더 정확한 방법이 필요할 것이다. 본 연구에서는 유한요소법을 이용한 EDISON용 CASAD solver 프로그램을 활용해 분석하였다. matrix와 fiber의 물성치를 대입해 복합재의 물성치를 구해 실험으로 측정된 물성치, 경험식으로 계산된 물성치와 비교를 하였다.
        4,000원
        1 2 3 4 5