검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 81

        41.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ΔH0 and ΔG0 showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.
        42.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (ΔG˚), enthalpy (ΔH˚) and entropy (ΔS˚) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.
        43.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Zeolite (FZ), prepared from fly ash, was immobilized with polyacrylonitrile (PAN) to fabricate PAN/FZ beads. The prepared PAN/FZ beads were characterized by scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The optimum ratio to prepare PAN/FZ beads was 0.3 g of PAN to 0.3 g of FZ. The diameter of the prepared PAN/FZ beads was about 3 mm. Sr and Cu ion adsorption experiments were conducted with PAN/FZ beads. A pseudo-second-order model fit the kinetic data for Sr and Cu ion adsorption by PAN/FZ beads well. The equilibrium data fitted well with the Langmuir isotherm model, and the maximum adsorption capacities were 96.5 mg/g and 74.6 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as Gibbs free energy (ΔGo), enthalpy (ΔHo) and entropy (ΔSo) were determined. The positive values of ΔHo revealed the endothermic nature of the adsorption process and the negative values of ΔGo were indicative of the spontaneity of the adsorption process.
        44.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Zeolite was synthesized from power station waste, coal fly ash, as an alternative low-cost adsorbent and investigated for the removal of Sr(II) and Cs(I) ions from single- and binary metal aqueous solutions. In order to investigate the adsorption characteristics, the effects of various operating parameters such as initial concentration of metal ions, contact time, and pH of the solutions were studied in a batch adsorption technique. The Langmuir model better fitted the adsorption isotherm data than the Freundlich model. The pseudo second-order model was found more applicable to describe the kinetics of system. The adsorption capacities of Sr(II) and Cs(I) ions obtained from the Langmuir model were 1.7848 mmol/g and 0.7640 mmol/g, respectively. Although the adsorption capacities of individual Sr(II) and Cs(I) ions was less in the binary-system, the sum of the total adsorption capacity (2.3572 mmol/g) of both ions in the binary-system was higher than the adsorption capacity of individual ion in the single-system. Comparing the homogeneous film diffusion model with the homogeneous particle diffusion model, the adsorption was mainly controlled by the particle diffusion process.
        45.
        2012.07 KCI 등재 서비스 종료(열람 제한)
        The removal property of Cu and Zn ions by chemical precipitation and adsorption using zeolite(Z-C1) prepared from coal fly ash(CFA) were evaluated in this study. Adsorption kinetic and equilibrium mechanisms described to analyze parameters and correlation factors with Lagergen 1st and 2nd order model and Langmuir and Freundlich model. Analysis of adsorption kinetics data revealed that the pseudo 2nd order kinetics mechanism was predominant. The equilibrium data in pH 3 - 5 were able to be fitted well to a Langmuir model, by which the maximum adsorption capacities(qmax) were determined at 124.9 - 140.1 mg Cu2+/g and 153.2 - 166.9 mg Zn2+/g, respectively. We found that Z-C1 has a potential application as absorbents in metal ion recovery with low pH.
        46.
        2012.06 KCI 등재 서비스 종료(열람 제한)
        Zeolite 4A was synthesized by fusion method from coal fly ash discharged at the thermal power plants. The synthesized zeolite(FAZ) was characterized through particle size analyzer, XRD, XRF and SEM. N2 adsorption-desorption measurement was used to examine surface and pore structures. The adsorption experiments were carried out under dynamic conditions of trace SO2 in N2 to investigate SO2 adsorption capacity of FAZ. The experiments were conducted to characterize the breakthrough characteristics of SO2 in a fixed bed under different operating conditions including temperature(50-125℃), concentration of SO2(3000-10000 ppm) and FAZ with 4 kinds of commercial zeolite. The adsorption capacity of FAZ was 53.84 mgSO2/g adsorbent, larger than that of the same type commercial zeolite(WK4A).
        47.
        2012.05 KCI 등재 서비스 종료(열람 제한)
        In this study, adsorption of polychlorinated biphenyls(PCBs) in transformer oil on powder activated carbon (PAC) and synthetic zeolite was evaluated. Adsorption characteristics of PCBs on the PAC and zeolite has been investigated in a batch system with respect to adsorbents amount and contact time. BET results showed 908 m2/g for PAC and 483 m2/g for zeolite. The adsorption capacity of PCBs increased with an increasing input amount of absorbent. The adsorption experimental results showed that PAC removed 90% of input PCBs in transformer oil while zeolite removed only 64%. Adsorption of PCBs to PAC and zeolite fit the Freundlich model well. The Freundlich parameter, Kf, for PAC and zeolite was 193.1 and 43.0 respectively, indicating that PAC is effect adsorbent for PCBs adsorption in transformer oil.
        48.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        The adsorption performance of cupper and zinc ions(Cu2+ and Zn2+) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of Cu2+ and Zn2+ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed Cu2+ and Zn2+ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity(qmax) by the Langmuir model was determined as Cu2+ 99.8 mg/g and Zn2+ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.
        49.
        2011.11 KCI 등재 서비스 종료(열람 제한)
        The adsorption performance of lead ion was studied using five zeolites (Na-P1, sodalite (SOD), analcime (ANA), nepheline hydrate (JBW), cancrinite (CAN)) synthesized from Jeju scoria. The adsorption performances of lead ion decreased in the order of Na-P1 > SOD > ANA > JBW > CAN. These results showed that the synthetic zeolite with a higher cationic exchange capacity showed a higher adsorption performance. The uptake of lead ion by synthetic zeolites were described by Freundlich model better than Langmuir model. The adsorption kinetics of lead ion by synthetic zeolites fitted the pseudo 2nd order kinetics better than pseudo 1st order kinetics. The effective diffusion coefficients of lead ion by synthetic zeolites were ten times higher than the zeolite A synthesized from coal fly ash.
        50.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        The removal performances of divalent heavy metal ions (Pb2+, Cu2+, Cd2+, Sr2+ and Mn2+) were studied using the Na-P1 zeolite synthesized from Jeju scoria in the batch and continuous fixed column reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite decreased in the order of Pb2+>Cu2+>Cd2+>Sr2+>Mn2+ based on the selectivity of each ion to ionic exchange site of Na-P1 zeolite for single and mixed solutions in batch or continuous fixed column reactor. For mixed solution, each heavy metal ion uptake was lower than that in single solution, and especially the uptake for Mn2+ decreased greatly. In batch reactor, the uptakes of heavy metal ions by synthetic Na-P1 zeolite were described by Freundlich or Langmuir equation, but they followed the former better than the latter. In continuous fixed column reactor, the maximum ion exchange capacity obtained for each of heavy metal ions, was about 90% of that in batch reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite increased with the increase of initial heavy metal concentration and solution pH, and the decrease of the amount and particle size of synthetic zeolite.
        54.
        2008.12 KCI 등재 서비스 종료(열람 제한)
        포항지역 널리 분포하고 있는 규질이암으로부터 상업화를 위한 50리터 bench scale 수열장치를 사용하여 Na-A형 제올라이트의 합성을 성공적으로 수행하였고 또한 이 제올라이트를 이용하여 환경 개선재로 활용하는 연구를 수행하였다. 초기물질로 사용된 규질이암은 제올라이트의 주요 성분인 SiO2 및 Al2O3가 각각 70.7% 및 10.0% 함유되어 제올라이트의 합성에 유리한 조성을 가지고 있다. 이전의 실험실적 규모에서 수행된 동일한 조건인 Na2O/SiO2 = 0.6, SiO2/Al2O3 = 2.0, H2O/Na2O = 98.6의 조성비로 80℃에서 18시간 동안 합성한 결과, Na-A형 제올라이트의 결정도 및 결정형태는 실험실적 규모와 유사하였고, 회수율 및 양이온 교환능은 각각 95% 및 215 cmol/kg으로 실험실적 규모에서 보다 약간 우수한 결과를 나타냈다. 합성된 Na-A형 제올라이트를 이용하여 모사폐액(Pb, Cd, Cu, Zn 및 Mn)에 중금속 제거율을 조사한 결과, 중금속 제거율은 Pb 〉 Cd 〉 Cu = Zn 〉 Mn의 순서이었다. Mn을 제외한 다른 중금속들은 1500 mg/L에서 99% 이상의 제거율을 보였고, Mn의 경우도 98%의 제거율을 보여 합성된 Na-A형 제올라이트는 중금속 흡착제로서 우수한 특성을 나타냈다.
        55.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        본 연구는 마포소각장에서 발생된 용융슬래그로부터 Na-A형 제올라이트를 합성하여 환경 저감재로 재활용키 위한 목적에서 수행되었다. 초기물질로 사용된 용융슬래그는 용제(flux)로 사용된 Fe 성분(19.6% of Fe2O3, and 18.9% of FeO)이 비교적 높기는 하지만, 상대적으로 제올라이트의 주요 성분인 SiO2, Al2O3 및 Na2O가 각각 26.6%, 10.9% 및 2.7% 함유되어 제올라이트의 합성에 유리한 조성을 가지고 있다. 제올라이트의 수열합성은 80℃에서 수행되었으며, SiO2/Al2O3 = 0.80~1.96인 넓은 범위의 화학조성에서 Na-A형 제올라이트가 합성되는 것을 확인하였다. 제올라이트의 양이온 교환 능력은 10 h 이상의 합성시간에서 일정하게 거의 220 cmol/kg인 것으로 측정되었다. 합성된 제올라이트의 중금속 (As, Cr, Cd, Cu, Mn 및 Pb)에 대한 흡착능을 측정한 결과, As 및 Cr을 제외한 모든 중금속에서 높은 흡착율을 보였다. As와 Cr은 Eh-pH분석을 통해 각각 HAsO42-와 CrO42-인 이온상으로 존재하고 있음을 확인하였다. As와 Cr에 대한 제올라이트의 흡착률이 낮은 것은 이들 이온상들의 크기가 Na-A형 제올라이트의 pore size (4 a)보다 상대적으로 큰 유효 이온반경(4 a, 직경 8 a)을 가지고 있기 때문인 것으로 결론지었다.
        58.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        포항부근에 널리 분포하는 제3기 퇴적암인 규질이암(siliceous mudstone)으로부터 Na2O/SiO2 =0.6, SiO2/Al2O3 = 2.0, H2O/Na2O=119 몰 비의 수열조건에서 반응시간(10~70시간)을 변화시켜 Na-A형 제올라이트를 합성하는 반응기구에 대한 연구를 수행하였다. 각 조건에서의 합성상은 X-선회절분석을 통하여 확인하였고, 적외선 분광분석, 열분석 및 주사전자현미경에 의한 특성분석을 수행하였다. 이러한 결과를 토대로, 규질이암으로부터 Na-A형 제올라이트의 단계별 반응기구는 초기에 규산 소다와 알루민산 소다의 반응에 의해 Na-A형 제올라이트가 1차적인 핵생성이 이루어진 후, 반응시간이 증가됨에 따라 잔여 알루민산 소다와 용해된 규질이암의 반응에 의해 Na-A형 제올라이트의 결정이 성장하였고 또한 하이드록시 소달라이트가 생성되었다. 그리고 반응 시간이 50시간의 장시간이 되면 Na-A형 제올라이트로부터 용해되면서 빠져나온 성분은 하이드록시 소달라이트와 반응에 의해 새로운 상인 Na-P형 제올라이트가 생성되는 일련의 과정으로 해석될 수 있다.
        59.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        수열합성법에 의하여 Na-P 형 및 Na-A형 제올라이트로부터 스멕타이트를 합성하였고 이들의 물리화학적 특성을 연구하였다. 제올라이트로부터 스멕타이트의 최적 합성조건은 반응온도 290℃, 반응시간 72 h, 자생압력 75~100kgf/cm2였으며, 스멕타이트의 합성을 위한 초기 반응 용액의 pH는 Na-P형 제올라이트의 경우, pH 6, 그리고 Na-A형 제올라이트의 경우, pH 10이었다. Na-P형 및 Na-A 형 제올라이트로부터 합성된 스멕타이트에 대한 부정방위, 정방위, 에티렌 그리콜 및 Greene-Kelly 시험법 등을 통하여 합성된 스멕타이트가 12a-바이델라이트임을 확인하였으며, 이들의 특성을 연구하였다.
        1 2 3 4 5