검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 249

        41.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Whisker-type magnesium hydroxide sulfate hydrate (5Mg(OH)2·MgSO4·3H2O, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (~180oC). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.
        4,000원
        44.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/ s at the laser power of 180 and 270W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.
        4,000원
        45.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization(460℃, 4h + 510℃, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal Mg2Zn, Al5Cu, Al3Cu formed between dendrities. After homogenization, MgZn, Al4Cu, Al13Cu phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging(100℃, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.
        4,000원
        46.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75%) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to 400 ℃ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at 200 ℃. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the 350 ℃ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at 300 ℃ and is completed at 350 ℃, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.
        4,000원
        47.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range(10−4-103/s). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(εf < ~50%) in high temperature(748 K) tensile deformation at high strain rates( = 1-102/s). εf in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(εf = ~140% at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(εf > 500%). Warm-rolling(at 393-492 K) tends to raise εf. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates ( < ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when εf is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.
        4,000원
        49.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to 400 °C for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over 300 °C. Electric conductivity increased with increasing temperature up to 250 °C, but no significant change was observed above 300 °C. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at 350 oC is the most suitable for the wire drawn Al alloy electrical wire.
        4,000원
        51.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Oxide layers were formed by an environmentally friendly plasma electrolytic oxidation (PEO) process on AZ91 Mg alloy. PEO treatment also resulted in strong adhesion between the oxide layer and the substrate. The influence of the KF electrolytic solution and the structure, composition, microstructure, and micro-hardness properties of the oxide layer were investigated. It was found that the addition of KF instead of KOH to the Na2SiO3 electrolytic solution increased the electrical conductivity. The oxide layers were mainly composed of MgO and Mg2SiO4 phases. The oxide layers exhibited solidification particles and pancake-shaped oxide melting. The pore size and surface roughness of the oxide layer decreased considerably with an increase in the concentration of KF, while densification of the oxide layers increased. It is shown that the addition of KF to the basis electrolyte resulted in fabricating of an oxide layer with higher surface hardness and smoother surface roughness on Mg alloys by the PEO process. The uniform thickness of the oxide layer formed on the Mg alloy substrates was largely determined by the electrolytic solution with KF, which suggests that the composition of the electrolytic solution is one of the key factors controlling the uniform thickness of the oxide layer.
        4,000원
        52.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The problem of disposal of brine due to increased MD/RO desalination plant has recently become a big social issue. The chlor-alkali process through electrolysis of brine has been studied as a method to overcome this problem. In order to increase the electrolysis efficiency, a pretreatment process for removal of hard substances must be preceded. In this study, we investigated the mechanism of removal of hardness through chemical precipitation. As a result, Ca was greatly influenced by addition of Na2CO3, and Mg was strongly influenced by pH. Also, the addition of NaOH and Na2CO3 enabled simultaneous removal of Ca and Mg, and showed a removal efficiency of 99.9% or more. Finally, the residual concentrations of Ca and Mg in the brine after the reaction were 0.14 and 0.13 mg/L, respectively. Saturation index was calculated using Visual MINTEQ 3.1, and solid phase analysis of the precipitate was performed by FE-SEM and PXRD analysis. It was confirmed that precipitate formed by the formation of calcite and brucite.
        4,000원
        53.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the mechanical characteristics with micro structure were analyzed on the butt joint of AZ60 magnesium material extruded by GMAW and GTAW processes. As the result of tensile test, the fracture in the welding joint area happened at both processes and seemed to be brittle fracture. The yield strength of GMAW was 84.29% and GTAW was 60.43% as compared with base metal. The yield strength of GMAW was higher 23.86% than that of GTAW. The result of decreased micro hardness was indicated at both processes. The value of minimum micro hardness in FZ at GMAW was Hv 46.7 and GTAW was Hv 43.6 as compared with base metal. The value of minimum micro hardness at GMAW process was higher 5.64 % than that at GTAW process. The size of grain boundary at GMAW process in HAZ is smaller than that at GTAW process. GMAW process is more superior than GTAW process from the productivity and quality in case of automatic welding for magnesium alloy such as the automobile seat frame.
        4,000원
        54.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg- 0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of Mg2Si. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.
        4,000원
        56.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A roll-bonding process was applied to fabricate an AA1050/AZ91/AA1050 laminate complex sheet. Two AA1050 and one AZ91 magnesium sheets of 2 mm thickness, 30 mm width and 200 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 2 mm in thickness by conventional rolling. The rolling was performed at 623K without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 15.9 m/min. The AA1050/AZ91/AA1050 laminate complex sheet fabricated by roll bonding was then annealed at 373~573K for 0.5h. The microstructure of the complex sheets was revealed by electron back scatter diffraction (EBSD) measurement; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the complex sheet was found to increase by 11 % and the tensile elongation decreased by 7%, compared to those values of the starting material. In addition, the hardness of the AZ91 Mg region was slightly higher than those of the AA1050 regions. Both AA1050 and AZ91 showed a typical deformation structure in which the grains were elongated in the
        4,000원
        57.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MgB2 bulk superconductors are synthesized by the solid state reaction of (MgB4+xMg) precursors withexcessive Mg compositions (x=1.0, 1.4, 2.0 and 2.4). The MgB4 precursors are synthesized using (Mg+B) powders. Thesecondary phases (MgB4 and MgO) present in the synthesized MgB4 are removed by HNO3 leaching. It is found thatthe formation reaction of MgB2 is accelerated when Mg excessive compositions are used. The magnetization curves ofMg1+xB2 samples show that the transition from the normal state to the superconducting state of the Mg excessive sam-ples with x=0.5 and x=0.7 are sharper than that of MgB2. The highest Jc-B curve at 5 K and 20 K is achieved forx=0.5. Further addition of Mg decreases the Jc owing to the formation of more pores in the MgB2 matrix and smallervolume fraction of MgB2.
        4,000원
        58.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of adding Ca on the microstructural and mechanical properties of as-cast Mg-11Li-3Zn-1Sn(wt%) alloys were investigated. Mg-11Li-3Zn-1Sn-0.4Mn with different Ca additions (0.4, 0.8, 1.2 wt%) were cast under an SF6 and Co2 atmosphere at 720 oC. The cast billets were homogenized at 400 oC for 12h and extruded at 200 oC. The microstructural and mechanical properties were analyzed by OM, XRD, SEM, and tensile tests. The addition of Ca to the Mg-11Li-3Zn-1Sn-0.4Mn alloy resulted in the formation of Ca2Mg6Zn3, MgSnCa intermetallic compound. By increasing Ca addition, the volume fraction and size of Ca2Mg6Zn3 with needle shape were increased. This Ca2Mg6Zn3 intermetallic compound was elongated to the extrusion direction and refined to fine particles due to severe deformation during hot extrusion. The elongation of the 0.8 wt% Ca containing alloy improved remarkably without reduction strength due to the formation of fine grain and Ca2Mg6Zn3 intermetallic compounds by Ca addition. It is probable that fine and homogeneous Ca2Mg6Zn3 intermetallic compounds played a significant role in the increase of mechanical properties.
        4,000원
        59.
        2015.06 구독 인증기관 무료, 개인회원 유료
        Quercetin is a natural flavonoid phytochemical that is extracted from various plants. Having an advantages due to its varied biological properties, such as anti-inflammatory, anti-viral, anti-oxidant, and anti-cancer effects, quercetin is used to treat many diseases. Recently, it has been reported that autophagy inhibition may play a key role in anti-cancer therapy. Therefore, in this study, we investigated the molecular mechanisms and anti-cancer effects of quercetin in human osteosarcoma cells via autophagy inhibition. We ascertained that quercetin inhibited cell proliferation and induced cell death, these process is demonstrated that apoptosis via the mitochondrial pathway and the caspase cascade. Quercetin also induced autophagy which was inhibited by 3-MA, autophagy inhibitor and the blockade of autophagy promoted the quercetin-induced apoptosis, confirming that autophagy is a pro-survival process. Thus, these findings demonstrate that quercetin is an effective anti-cancer agent, and the combination of quercetin and an autophagy inhibitor should enhance the effect of anti-cancer therapy.
        4,000원
        1 2 3 4 5