The boar sperm has more lipid droplets and specialty of seminal plasma compared with other species, causing difficulties of freezing sperm and decreases for the utilization of frozen semen into the artificial insemination. However, several studies reported significant results for the recovery of sperm motility and reproductive by addition of cryoprotectants and seminal plasma after thawing. This study was designed to investigate the effects of supplementation of trehalose or glycerol in the LEY (lactose and egg yolk in BTS) solution for the conventional freezing and vitrification process. Two boars aged 16 months were used to collect semen for 2 times in a week. The samples were allotted to 3 freezing solutions (LEY + glycerol 10.5% + OEP 1.5%, LEY + trehalose 1M + OEP 1.5%, and sucrose 1.5M + trehalose 1 M + OEP 1.5%) after centrifugation at 800 g for 10 minutes. Semen was equilibrated in freezing solutions for 10 minutes and injected into plastic straws with 2∼3 air bubbles to minimize freezing damages. Vitrification was performed to locate sperm in 5 cm above LN2 for 5 minutes, and the conventional freezing was conducted with an automatic freezer. Motility and survival rates were measured by CASA (Computer assisted sperm an alyzing system) and FITC (Fluorescein isothiocyanate), respectively after thawing semen at 50℃ for 12 seconds. The results were analyzed by ANOVA with STATVIEW statistical program. The vitrificatioin solution (LEY + 10.5% glycerol + 1.5% OEP) presented higher motility (20.9%) than other solutions while the solution (LEY + 1M trehalose + 1.5% OEP) showed the lowest (motility : 5.2%). However, survival rates of vitrified sperms detected by FITC showed 1~4% live sperms in almost of dead sperms at all vitrification solutions’ groups, but survival rate of freezing solution of LEY + 1M trehalose + 1.5% OEP LEY and LEY + 10.5% glycerol + 1.5% OEP were showed 49%, and 79%, respectively. There were differences (P<0.05) survival rate of conventional freezing in LEY + 10.5% glycerol + 1.5% OEP and LEY + 1M trehalose + 1.5% OEP and the remaining showed no differences. The results suggested that vitrified boar semen was not enough to be utilized for the artificial insemination, but it showed possibility to utilize for ICSI and conventional freezing with glycerol would be useful method for artificial insemination in pig while we choose the outstanding semen against tolerance to freezing damages.
본 실험은 국화의 바이로이드 제거에 이용되는 초저온처리 시 국화 품종 'White ND'을 적합한 처리조건을 확립하기 위해 초저온처리의 단계별 요인을 실험하였다. 그 결과 생장점의 크기는 1 mm(엽원기 2~3매 포함)에서 높은 생존율과 신초 재생율을 나타내었고, vitirification 처리시 PVS3가 효과적이었으며, 처리 시간은 60분 처리 하였을 때 높은 생존율 및 정 상 신초 재생율을 보였다. 또한 vitrification을 위한 전처리 조건은 sucrose 농도를 88 mM 24시간, sucrose 0.3 M 16시간, sucrose 0.5 M 6시간, sucrose 0.7 M 3시간으로 처리하는 것이 초저온 처리 후 생존율 및 신초 재생율을 높이는데 효과적이었으며, 재생된 정상 식물체는 모본과 비교하여 ploidy level이 동일한 것으로 보아 식물체의 유전적 변이가 일어나지 않았다.
This study was carried out to study the survival rate of thawed Hanwoo embryos frozen by the slow-rate freezing or the cryotop vitrification method. Hanwoo cumulus-oocyte complexes were recovered from ovaries at a slaughter house, matured for 20~22 hours, fertilized with Hanwoo semen for 5~6 hours, and cultured for 7~9 days in 38.5℃, 5% CO2 incubator. For freezing, Day 7∼9 blastocysts were collected. Embryos for the slow-rate freezing were equilibrated in 1.8 M ethylene glycol (EG) with Dulbecco's phosphate-buffered saline (D-PBS). Programmable cell freezer was precooled down to —7℃, and the straw was seeded during 8 minutes-holding time, and was cooled to —35℃ at the cooling rate of 0.3℃/min, and then was plunged and stored in liquid nitrogen. Embryos for the cryotop vitrification were treated in TCM199 with 0.5 M sucrose, 16% EG, 16% dimethylsulfoxide (DMSO). Embryos were then loaded individually onto cryotop and plunged directly into liquid nitrogen. The survival rates of embryos frozen by these two freezing methods were evaluated at 12 to 24h post-thawing. The survival rates of frozen/thawed Hanwoo embryos by the cryotop vitrification method (56.86 ± 26.53%) were slightly higher than those by the slow-rate freezing method (55.07 ± 26.43%) with no significant difference. Using the cryotop vitrification and the slow-rate freezing of Hanwoo blastocysts on Day 7 following in-vitro fertilization (IVF) treatment, the survival rates of frozen/thawed Hanwoo embryos were 72.65 ± 18.3% and 79.06 ± 17.8%, respectively. The survival rates by the cryotop vitrification were higher than those by the slow-rate freezing on both Day 8 and 9 with significantly higher survival rate on Day 9 (p<0.05). Using the cryotop vitrification and the slow-rate freezing of Hanwoo embryos to compare between three different blastocyst stages, the survival rates of the blastocyst stage embryos were 66.22 ± 18.8% and 45.76 ± 12.8%, respectively with higher survival rate by the vitrification method (p<0.05). And the survival rate of expanded blastocysts was higher than those of early blastocysts and blastocysts in two freezing methods with significantly higher
survival rate by the slow-rate freezing method (p<0.05).
The purpose of this study was attempted to new methods in mammalian embryos vitrification. This method was affected to increase of the embryo vitrification efficiency and it would be applied to the field of embryo transfer to recipient by modified loading method of embryo into 0.25 ml plastic straw. The frozen mouse embryos were carried out warmed from two different cell stages (8-cell and blastocyst, respectively) by attachment of an embryo in the vitrification straw (aV) method. All groups were cultured in M-16 medium to determine the development and survivability for 24 h, respectively. Results shown that, the survivability of two different groups were significantly different (94.8% vs. 70.9%). Total cell number was not significantly different the non-frozen blastocyst (99.7 ± 12.4) compared to the post-thaw blastocyst (94.8 ± 15.1). From the 8-cell embryo, total cell number of frozen blastocysts were significantly lower than others groups (74.7 ± 14.6, p<0.05). In the case of cell death analysis, the blastocysts from non-frozen and frozen-thawed 8-cell group were not different (0.0 ± 0.0 vs. 1.9 ± 3.1, p>0.05). However, the apoptotic nuclei of blastocyst were significantly observed the frozen-thawed group (5.4 ± 4.4) compared to non-frozen group (p<0.05). Therefore, this new method of embryos using in-straw dilution and direct transfer into other species would be more simple procedure of embryo transfer rather than step-wise dilution method and cryopreservation vessels, so we can be applied in animal as well as human embryo cryopreservation in further.
파이로그린공정의 염폐기물처리과정에서 발생되는 주요 산화물 형태의 폐기물에는 희토류폐기물이 있으며 주요 구성 핵종은 Y, La, Ce, Pr, Nd, Sm, Eu, Gd 등 8종이다. 최종적인 희토류폐기물의 형태는 산화물 형태로 발생된다. 본 연구에서는 붕규산 유리계 내에서 희토류 산화물의 유리화 타당성을 평가 하기 위하여 6종의 유리조성을 개발하였다. 희토류 8핵종 혼합에 대한 solubility는 1,200℃에서 25wt% 미만, 1,300℃에서 30wt% 미만 waste loading으로 온도 상승에 따라 증가하는 것으로 나타났으며 liquidus temperature는 균질한 유리가 형성된 20wt% waste loading에서 950℃ 이하로 평가되었다. 희토류 산화물의 유리매질 내 solubility 이상에서는 희토류-oxide-silicate 결정이 생성된 유리세라믹을 이차상으로 형성하였으며 20~25wt% waste loading의 표면균질성이 양호한 유리는 용융온도 1,200~1,300℃ 범위에서 점도 100 poise 이하, 전기전도도 1 S/cm 이상으로 유도가열식 저온용융로설비에서의 운전 용이성이 매우 양호한 것으로 평가되었다. 개발된 유리조성에 대한 기타 물리·화학적 특성 평가를 위한 실험들이 향후 수행될 예정이다.
Solution of glycerol, ethylene glycol, sucrose, dextrose (GESD) and cryotop methods were carried out to investigate the survivability on vitrification of embryos. Embryos cultured in vitro were vitrified by GESD of 10 or 8 step and cryotop methods of 6 step, from cryopreservation step to frozen-thawed and culture step. Survival rate and ICM, TE cells of embryos were investigated after frozen-thawed 24 h. As a results, cryotop method was significantly (p<0.05) higher ( vs. , ) than GESD 10 or 8 step methods on survivability. Also, In ICM cell number, cryotop method was significantly (p<0.05) higher to cells than GESD 8 step method. TE cell number was significantly (p<0.05) highest to cells in cryotop method. On the other hand, survival rate, TE and total cell number were all the significantly (p<0.05) high, except ICM in GESD 10 step method between GESD 10 step method and GESD 8 step method. In conclusion cryotop method was to be most effective, but it is considered necessary to study vitrification method for step-by-step freezing and thawing process.
The purpose of this study was to assess follicular viability and competence through in vitro culture of preantral follicles isolated from vitrified mouse whole ovaries. Mouse preantral follicles were enzymatically isolated from vitrified-warmed and fresh ovaries and cultured for 10 days followed by in vitro oocyte maturation. In vitro matured oocytes were fertilized and cultured to the blastocyst stage. Five minutes pre-exposure to vitrification solution of whole ovaries had significantly higher (p<0.05) oocyte survival and maturation rates than between 10 min exposure groups. Oocyte diameter was significantly smaller (p<0.05) in the 5 and 10 min exposure groups (69.4±2.8 and 67.8±3.1) when compared to that of control group (71.7±2.1). There was no statistical significant difference in blastocyst development rates between vitrification group (8.6%) and the fresh control group (12.0%). The mean number of cells per blastocyst was significantly lower (p<0.05) in the vitrification group (41.9±20.2) than in the fresh control group (55.1±22.5). The results show that mouse oocytes within preantral follicles isolated from the vitrified whole ovaries can achieve full maturation, normal fertilization and embryo development.
원전에서 발생되는 방사성폐기물에 대한 고화처리 방법 중 하나인 유리화기술이 일부 가연성폐기물에 대해 적용되고 있다. 국내외적으로 중저준위 방사성폐기물의 효과적인 감용과 안정적인 처분을 위해 다양한 폐기물에 대한 유리화기술 적용방안이 확대 연구되고 있으며, 최근에는 가연성폐기물 뿐만 아니라 알루미늄 금속과 같은 비가연성폐기물에도 유리화 연구가 활발하게 진행되고 있다. 공기조화계통 (HVAC)에는 주로 필터가 이용되고 있으며, 사용 후 필터는 여과재 (유리섬유 및 알루미늄)를 이용하여 배기체를 흡착하기 때문에 방사성폐기물로 처리가 되어야 한다. 본 연구는 필터에 대한 처리기술 연구를 위해 유도가열식 저온용융로 (Cold Crucible Induction Melter: CCIM)를 이용한 유리화 타당성 연구를 수행하였다. 사용후 필터에 대한 유리화 (Vitrification)는 먼저 유리섬유 및 알루미늄 함량을 고려한 최적의 유리조성을 개발 하였으며, 개발된 유리조성을 이용하여 최적의 폐기물 저감을 위한 용융변수와 최종 생성된 유리고화체의 특성을 분석하였다. 사용후 필터 유리화용 조성유리는 주로 SiO2와 B2O3로 구성되어 있다. 전기로를 이용한 용융물 특성시험에서는 폐기물 투입률 및 최종 생성물인 유리고화체의 특성이 검토되었다. 본 연구에서는 알루미늄 금속과 유리섬유로 구성된 필터에 대한 유리조성 개발과 이를 통해 생성된 유리고화체의 물리화학적 특성을 검토하고 유리화 타당성을 확인하였다.
There are diverse methods of cryopreservation of mammalian embryos with variable degrees of success. Although cryopreservation technique of mammalian embryos has been advanced, freezing stress affect to cellular event such as apoptosis and autophage in embryos. The objective of the study is to investigate the affection of to survival, development, live offspring, apoptosis and autophagy on embryo. Mouse embryos were vitrified and thawed using normal straw and modified cut standard straw (M-CSS), then in vitro cultured until blastocyst stage and transferred to recipient. Recovery rates (100 vs 99.2%), survival rates (99.2 vs 78.6%), developmental rates (18.4 vs 10.7%), total cell numbers (45 vs 37), preganacy rates (34.5 vs 25%) and offspring numbers (10.1 vs 4.9 %) of M-CSS group are significantly higher than those of normal straw vitrified group. Also, rate of apoptosis in blastocysts developed using M-CSS (1.9%) was significantly lower than using normal straw vitrification (2.7%). Apoptosis-related gene, caspase 3, was expressed at the highest level in blastocysts derived from normal straw group. However, no differences of autophagy related gene, Atg6 and expression of LC3 between normal straw and M-CSS groups were observed. In conclusion, the standard vitrification procedure induces mitochondrial apoptosis in zygotes in an autophagy-independent manner, whereas the novel M-CSS procedure may improve embryo vitrification.
The objective of this study was to investigate the effectiveness of cryopreservation methods for the effect of various vitrification containers, such as EM-grid, OPS, or cryo-loop on the survival and developmental rate of vitrified mouse pronuclear embryos, and mouse cleavage embryo, at 21, 24, 27 and 30 hr after hCG injection. Post-thaw cleavage was similar among treatments, while the developmental rates of mouse blastocyst and hatched blastocyst were higher ( <0.05) in 27 hr and 30 hr than 21 hr. The developmental rate of hatched blastocyst at vitrified cleavage mouse embryos in cryo-loop was significantly higher than vitrified pronuclear embryos of control group as well as EM-grid and OPS ( <0.05). The developmental rate using cryo-loop was higher than EM-grid, but in case of OPS at vitrified cleavage and mouse pronuclear embryos, no significant difference was noticed. These results of our study show that the developmental rates of mouse embryos were unaffected by various vitrification containers, but in case of mouse embryos and hatched blastocysts at late vitrified pronuclear embryos the developmental rates were higher than early vitrified pronuclear embryos. Moreover, the developmental rate of hatched blastocyst at vitrified cleavage mouse embryos was significantly higher than vitrified pronuclear embryos. For better execution of this study, it will be mandatory to include improvement of vitrification containers, cryopreservation methods and conditions, higher survival rate, safe preservation, contamination and embryo loss.
The present study was performed to investigate the survival and subsequent embryonic developmental rate of immature and mature oocytes after vitrification and pronuclear stage embryos after slow-freezing and vitrification. We have also tried to examine the dependency of concentrations (7.5, 15%) and exposure time (5, 10, 20 min) of ED cryoprotectant on developmental rate of pronuclear stage embryos. The developmental rates of 2-ce1l and blastocyst embryos at mature oocytes were significantly (p<0.05) higher than immature oocytes. After slow freezing, vitrification and thawing of pronuclear stage embryo, the survival and developmental rates of blastocysts and hatched blastocysts were significantly (p<0.05) higher after vitrification than after slow-freezing. On contrary, the developmental rates of 2-cell embryos were significantly (p<0.05) higher after slow freezing than after vitrification. The cryopreservation methods of pronuclear stage embryos vitrified by exposed to 7.5% ED solution for 5 minutes was significantly (p<0.05) higher than other experimental group. The results of our study suggest 1hat the developmental rates of mature oocytes have been more successful than immature oocytes during vitrification. Vitrification was more efficient than slow freezing in case of pronuclear stage embryos. The effective cryopreservation method of pronuclear stage embryos was vitrified by exposed to 7.5% ED solution for 5 minutes.
The in vitro maturation rate of vitrified-thawed canine oocytes was 30.8±3.4%. The in vitro maturation rate of vitrified oocytes was lower than that of the control (52.0±2.5%, p<0.05). The in vitro maturation rate of vitrified-thawed oocytes were significantly (p<0.05) lower than those of fresh oocytes. The in vitro maturation and developmental rates of the vitrified-thawed oocytes were 17.5±2.5% and 8.8±3.4%, respectively. This results were lower than the control group (43.6±3.2% vs 20.0±3.0%). SOD1 gene expression of 1~2 mm of follilce size were higher than those of above 6 mm follicle size. SOD2 gene expression of 1~2 mm of follicle size were significantly higher than those of above 6 mm follicle size (p<0.01). The expression pattern of SOD1, 2 was constantly expressed in both groups but strongly expressed in follicles (1~2 mm) group when compared to the above 6 mm follicles. SOD gene expression between groups the fresh and vitrified oocytes groups were significant differences in rates. However, RGS gene expression between groups the fresh and vitrified oocytes groups were no significant differences in rates.
One-step dilution and direct transfer would be a practical technique for the field application of frozen embryo. This study was to examine whether Jeju Black Cattle (JBC, Korean Cattle) can be successfully cloned from vitrified and one-tep diluted somatic cell nuclear transfer (SCNT) blastocyst after direct transfer. For vitrification, JBC-SCNT blastocysts were serially exposed in glycerol (G) and ethylene glycol (EG) mixtures〔10% (v/v) G for 5 min., 10% G plus 20% EG (v/v) for 5 min., and 25% G plus 25% EG (v/v) for 30 sec.〕which is diluted in 10% FBS added D-PBS. And then SCNT blastocysts were loaded in 0.25 ml mini straw, placed in cold nitrogen vapor for 3 min. and then plunged into LN2. One-step dilution in straw was done in 25℃ water for 1 min, by placing vertically in the state of plugged- end up and down for 0.5 min, respectively. When in vitro developmental capacity of vitrified SCNT blastocyst was examined at 48 h after one-step dilution, hatched rate (56.4%) was slightly lower than that of control group (62.5%). In field trial, when the vitrified-thawed SCNT blastocysts were transferred into uterus of synchronized 5 recipients, a cloned female JBC was delivered by natural birth on day 299 and healthy at present. In addition, when the short tandem repeat marker analysis of the cloned JBC was evaluated, microsatellite loci of 11 numbers was perfectly matched genotype with donor cell (BK94-14). This study suggested that our developed vitrification and one-step dilution technique can be applied effectively on field trial for cloned animal production, which is even no longer in existence.
가압경수로 원전 농축폐액건조설비(CWDS)에서 생성된 농축폐액건조물에 대한 고화 방안이 국내외적 으로 다양하게 연구되어 왔다. 농축폐액의 고형화는 시멘트, 파라핀 및 폴리머와 같은 고화제를 이용하여 수행되어 왔다. 동시에 농축폐액에 대한 감용비 및 운영상의 효과를 극대화하기 위한 농축폐액건조물 전처 리 방안이 연구되었다. 건조된 분말 형태의 폐기물을 유리화 설비에서 직접 처리할 경우 비산에 의한 배기 체 계통 및 폐기물 투입구 막힘 현상을 초래할 수 있으며, 취급 중 비산에 의한 방사성피폭을 초래할 가능 성이 있다. 본 연구는 분말형태의 폐기물을 유리화설비에서 고화하기 위한 전처리방안을 수립하고 이를 통해 설비운영 및 폐기물 운영관리의 안전성을 확보하는데 목적이 있다.
We investigated the cleavage rate and blastocyst yield for each culture condition to enhance tolerance of cryo-preservation of bovine IVF embryo with relatively lower cryo-tolerance compared to in vivo embryo. The cleavage rate and blastocysts yield for CR1aa, IVMD, IVD, CR1aa+10% FBS were 73.2, 69.3, 72.8, 68.5% and 44.1, 30.8, 33.3, 48.0%, respectively. The values did not differ among each treatments without serum. For embryo vitrification, In vivo and In vitro blastocysts were exposed to VS1(10% glycerin, 0.1 M glucose, 0.1 M sucrose, PEG 1%) for 5 min, and VS2 (10% glycerin, 10% EG, 0.2 M glucose, 0.2 M sucrose, PEG 2%) for 5 min and then VS3 (10% glycerin, 30% EG, 0.3 M glucose, 0.3 M sucrose, PEG 3%) for 1 min. The exposed embryos were then loaded into the 0.25 ml plastic straws and then plunged into liquid nitrogen. The straws were held for period of 1 to 2 weeks before thawing. In embryo viability, no differences in blastocyst re-expansion rates were found between in vivo and in vitro embryos. whereas expansion-BL rates was significantly higher for in vivo-derived embryos (72.7%) when compared to in vitro-derived embryos (51.4%), respectively (P<0.05). In conclusion, our results indicate that combined use of CRIaa culture medium with vitrification might enhance tolerance of cryopreservation for bovine IVF embryo production.