검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 812

        761.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 고등해석과 유전자 알고리즘을 이용한 강뼈대 구조물의 직접설계시스템의 최적화를 수행하였다. 본 연구에서 사용한 고등해석은 기하학적 비선형과 재료적 비선형을 동시에 고려한다. 직접설계 시스템의 최적화를 위해 유전자 알고리즘을 사용하였다. 목적함수로 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의해 나타난 결과를 다른 방법에 의한 것들과 비교해서 그 효율성을 증명하였다.
        762.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        스무딩은 가변 비트율로 저장된 비디오 데이터를 클라이언트로 전송할 때 일련의 고정 비트율로 전송할 수 있도록 전송 계획을 세우는 것으로 이러한 스무딩 알고리즘에는 CBA, MCBA, MVBA, PCRTT 등이 있다. 그러나 이 알고리즘들에서는 GOP내에서 프레임들간의 바이트 수의 차이가 심한 경우에도 이 순서대로 전송 계획을 세우기 때문에 불필요하게 전송률이 변화되거나 급격하게 높은 전송률이 요구될 수 있다. 이는 네트워크 자원의 효율적 인 사용을 어렵게 할 수 있다. 이를 개선하기 위하여 본 논문에서는 빠른 시간안에 최적의 해를 찾을 수 있는 백트랙킹 방법을 이용하여 GOP 내에서 가장 완만하게 프레임의 바이트 수가 변화되는 프레임들의 순서를 검색하여 이 순서대로 전송 계획을 세우는 스무딩 알고리즘과 이를 위한 구조를 제안한다. 제안 알고리즘의 성능은 다양한 비디오 소스를 가지고 MVBA 알고리즘과 전송률 변화 횟수, 첨두 전송률, 전송률 변화량을 비교 분석하여 평가한다.
        763.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        게임의 발전에 따라 게임에 등장하는 NPC(Non-Player Character)들의 지능 또한 중요성을 더해 가고 있다. 단순히 이동하고 플레이어를 공격하기만 하는 수준을 넘어서 WPC들 역시 다양한 기술과 전술을 사용하는 것이 최근의 MMORPG 게임의 추세이다. 본 논문에서는 신경망과 유전자 알고리즘을 이용하여 롤플레잉 게임에 사용되는 캐릭터에게 학습 및 적응 능력을 부여하는 방법을 제안한다. 제안된 지능 캐릭터가 얼마나 게임의 규칙과 전술을 잘 학습하고 적응하는지를 살펴보기 위하여 본 논문에서는 간단한 게임 모델을 제작하여 실험하였다. 캐릭터는 탱커(Tanker), 딜러(Dealer), 힐러(Healer)의 3가지 종류가 있으며, 지능 캐릭터 집단은 신경망과 유전 알고리즘으로 학습되고 FSM으로 움직이는 적 캐릭터 집단과의 전투를 통해 학습한다. 실험 결과 지능 캐릭터가 전투를 통해 자신과 적의 능력에 따른 적절한 전투 방식을 스스로 학습하고, 게임 규칙의 변화에 적응하는 것을 볼 수 있었다.
        765.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        FRP 판은 외부 부착된 보강 판의 효과적인 부착강도의 증진으로 실질적으로 부착강도에 대한 많은 연구가 수행되어왔다. 선행연구자들은 이러한 부착강도를 알아보기 위하여 다양한 변수를 설정하여 실험을 통하여 FRP 판의 부착강도를 규명하였다. 그러나, 이러한 부착강도를 알아보기 위한 실험은 장비구축의 비용과 시간 소비가 많이 되고 수행하기 어렵기 때문에 국한적으로 수행되고 있다. 본 연구는 선행연구자들의 부착실험 데이터를 다양한 신경망 모형과 알고리즘을 적용하여 최적의 인공신경망 모형을 개발하는데 그 목적이 있다. 인공신경망 모형의 출력층은 부착강도, 입력층은 FRP 판의 두께, 폭, 부착 길이, 탄성계수, 인장강도와 콘크리트의 압축강도, 인장강도, 폭을 변수로 선정하여 학습을 수행하였다. 개발된 인공신경망 모형은 역전파 학습 알고리즘을 적용하였으며, 오차는 0.001범위에 수렴되도록 학습을 하였다. 또한, 일반화 과정은 Bayesian 기법을 도입함으로써 보다 일반화된 방법으로 과대적합의 문제를 해소하였다. 개발된 모형의 검증은 학습에 이용되지 않은 다른 선행연구자들의 부착강도 결과 값과 비교함으로서 실시하였다.
        767.
        2005.12 KCI 등재 서비스 종료(열람 제한)
        선박 침수 사고의 경우, 선박의 운용 책임자가 취할 수 있는 대응방안이 한정되어 있어 정확한고 신속한 의사결정을 위해서는 기존의 안전관련 시스템을 활용한 효율적인 의사결정 지원 시스템이 필요하다. 수밀 및 준수밀 문, 격벽 밸브, 배수 펌프 등과 같이 침수 사고 시작동하는 대부분의 시스템들은 침수가 선박 전체로 전파되는 것을 막도록 충분한 구획분할 정도를 확보하는데 목적이 있다. 침수 시나리오가 파국적이지 않다고 가정하더라도 발라스트 탱크의 사용은 침수 전파 방지와 선박 안정성을 향상하기 위한 매우 효과적인 방안이 될 수 있다. 본 논문에서는 침수 손상 시 최적의 대응방안을 위해 채워져야 하는 발라스트 탱크들을 선정하고, 각 발라스트 탱크의 수위를 결정하는 최적화 알고리즘을 기술한다.
        773.
        2004.10 KCI 등재 서비스 종료(열람 제한)
        자동차 번호판 인식 시스템에서 가장 중요한 요소가 자동차 이미지 영역에서 번호판 영역을 정확히 검출해 내는 것이다. 자동차 이미지에서 번호판 영역을 추출하기 위한 방법으로 색상과 밝기 정보와 자동차 번호판의 가로 세로 비율 등 번호판을 인식할 수 있는 정보를 혼용한 ACL 알고리즘을 제안한다. ACL 알고리즘을 사용함으로써 기존의 색상 정보나 명암 정보만을 이용할 경우 자동차 번호판 영역 추출이 잘되지 않는 문제를 해소시켜 준다. 본 논문에서 제안하는 ACL 알고리즘은 자동차 이미지에서 번호판 영역을 추출할 경우 색상 정보와 명암정보, 기타 자동차 번호판을 판단할 수 있는 정보를 모두 이용한다. ACL 알고리즘을 이용하여 번호판 추출 실험을 한 결과 97%의 추출률을 보였다. ACL 알고리즘을 이용하여 추출된 번호판을 이용하여 문자 영역, 문자 인식을 한 결과 92%의 결과를 보였다.
        776.
        2004.04 KCI 등재 서비스 종료(열람 제한)
        본 논문은 신경 회로망과 유전 알고리즘을 이용한 비선형 시스템 모델링을 다룬다. 비선형 함수의 근사성 때문에 시스템을 식별하고 제어하기 위해서 신경 회로망을 응용한 연구가 실제로 많이 이루어지고 있다. 빠른 응답시간과 최소의 오차를 위해서는 최적구조 신경 회로망을 설계하는 것이 중요하다. 유선 알고리즘은 최근에 단순성과 견고성 때문에 점점 많이 이용되는 추세이다. 따라서 본 논문에서는 유선알고리즘을 이용하여 신경회로망을 최적화한다. 오차와 응답시간을 최소화하는 신경 회로망 구조를 위해서 유전알고리즘의 유전자로 이진 코딩하여 최적 신경회로망을 탐색하고자 한다. 시뮬레이션을 통해서, 최적 신경회로망 구조가 비선형 시스템 식별에 효과적인 것을 입증하고자 한다.
        777.
        2004.04 KCI 등재 서비스 종료(열람 제한)
        평균법과 클러스터링은 다속성 평가문제에서 널리 쓰이고 있는 중요한 데이터 마이닝 기법들이다. 그러나, 다양한 다속성 평가 문제에서 데이터 마이닝을 할 때, 데이터들의 특징은 그 중요성이 달라질 수 있기 때문에 이러한 데이터의 중요도 차이를 고려해야 할 필요가 있다. 따라서, 이러한 기법들은 데이터의 선택 및 중요도 등과 같이 그 특징을 얼마나 잘 반영하는 지가 중요하다. 게다가, 산술평균법의 경우에는 우선순위 및 가중치로 정의되는 평가구조에서 적합한 결과를 산출하기에는 한계가 있을뿐 만 아니라, 평가자 그룹별 특징을 반영하기 곤란하다. 따라서, 본 연구에서는 기하학적 도형을 바탕으로 유사도를 평가하여, 평가자 그룹별로 특징지어지는 이산적인 환경에서의 평균을 산출하는 알고리즘을 제안하였다. 본 알고리즘의 핵심사항 중 하나는, 항목별 우선순위의 혼돈없이 유사도를 평가할 수 있다는 점이다.
        778.
        2004.01 KCI 등재 서비스 종료(열람 제한)
        국내산지사면의 토양수분 시공간적 분포상황을 파악하기 위한 토양수분 측정법이 개발되었다. 대상유역을 정밀측정하여 수치고도모형을 구성한 다음 흐름분배 알고리즘을 적용하고 공간적 변화의 대표성을 최대화하기 위한 측정체계를 구축하였다. 토양수분이 강우-유출형성과정에 기여하는 기작을 표현하는 유도과정도 전개되었다. 측정은 설마천 유역의 법륜사 우측사면에서 수행되었다. 다중 측정망의 운영을 통하여 시공간적으로 변화하는 토양수분 자료를 획득하였다. 습한 조건에서 토
        779.
        2003.10 KCI 등재 서비스 종료(열람 제한)
        The genetic algorithm is investigated for parameters estimation of SED (storage - effective drainage) model from the Wi-stream watershed in Nakdong river basin. In the practical application of model, as a number of watershed parameters do not measure directly, it is desirable to make a good estimation from the known rainfall and runoff data. For the estimation of parameters of the SED model using the genetic algorithm, parameters of Green-Ampt equation(SM, Ks) for the estimation of an effective rainfall and initial storage(yin) used in SED model are obtained a regression equation with 5, 10, 20 days antecedent precipitation. And as a consequence of computation, the parameters were obtained to satisfy the proposed objective function. From the comparison of observed and computed hydrographs, it shows a good agreement in the shape and the rising limb, peak, falling limb of hydrograph, so the SED model using the genetic algorithm shows a suitable model for runoff analysis in river basin.
        780.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        레이더 신호처리론 포함하여 무선통신 시스템의 성능향상을 위한 수신신호의 도래방향 추정기술 중, MUSIC과 ESPRIT와 같은 방법들은 수신신호 벡터로부터 얻어진 상관행렬의 고유치 분해를 통하여 도래방향을 정도 높게 추정할 수 있는 초고분해 알고리즘들로 잘 이용되어 왔다. 그러나, 이러한 방법들은 계산의 복잡성으로 인하여 실시간 처리에 장애가 되어 왔으며, 어레이 안테나의 물리적인 결함에 대한 보정을 요구한다. 이에 대한 해결방법으로서 신경망 모델을 이용한 도래방향 추정방법들이 연구되어 왔으나, 복수의 신호가 존재할 경우 신경망 모델에 대한 대규모 학습량을 요구하고, 실시간 처리가능성에 대한 명확한 해를 제공하지 못한다. 본 연구에서는 상호결합형 신경망 모델을 이용하여 도래방향을 추정하기 위한 방법을 제안하고, 컴퓨터 시뮬레이션을 통하여 실시간 처리가능성을 보여주었으며, 제안된 방법이 MUSIC 보다 더 좋은 추정치를 제공한다. 게다가, 제안된 방법은 대규모 학습을 요구하지 않는다. 즉, 도래방향을 추정하기 전에 상호결합계수를 신경망에 할당할 뿐이다.