검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 151

        62.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and Mg2SiO4. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.
        4,000원
        63.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To prepare weather-resistant modified silane acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The composition of monomers was adjusted to fix the glass transition temperature of acrylic polymer for 20℃. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects on weatherability were examined. The presence of MPTS in modified silane acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the modified silane acrylic resins containing 30 wt% of MPTS had superior weathering properties.
        4,600원
        64.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Plasma electrolytic oxidation (PEO) treatment was performed on cast Mg-6 wt%Al alloy solution-treated at 693K for 16h and aged at 498K. The surface roughness, thickness, micro-hardness, wear and corrosion properties of coatings on solution-treated and aged Mg-6 wt%Al alloy were investigated. The coatings on aged Mg-6 wt%Al alloy had thinner layer and lower micro-hardness and wear resistance than the solution-treated Mg-6 wt%Al alloy. As the aging time increased, the thickness of coatings decreased while the surface roughness was almost no changed. In addition, the micro-hardness and wear property of coatings decreased with increasing the aging time unlike the uncoated Mg-6 wt%Al alloy showing the peak micro-hardness and the best wear property after aging for 16 h. However, the coatings on Mg-6 wt%Al alloy peak-aged for 16h revealed the best corrosion resistance in 3.5% NaCl solution, which was explained based on the microstructural characteristics.
        4,000원
        65.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Characteristics of polyaniline anti-corrosive coatings with various primer coating resins(epoxy resin, urethane resin, and others) and top coating resins(epoxy and acrylic urethane resins) were investigated through adhesion, acid resistance, alkaline resistance, water resistance, and anti-corrosion tests. As a result, the anti-corrosive properties of the prepared coatings using polyaniline varied with the types of primer and top coating resins. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using emeraldine base (EB) of polyaniline blended with single-packaged urethane and acrylic urethane resins as the primer coatings, and using acrylic urethane resin as the top coatings. Also, the anti-corrosive function of these anti-corrosive coatings was well preserved for 1000 hr in the salt spray experiment.
        4,200원
        66.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to enhance the flame retardancy by the synergism effect of phosphorus and bromine groups. The flame-retardant polyurethane coatings containing phosphorus and bromine compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis(orthophosphate) (TBOP) and trimethylolpropane/2,3-dibromopropionic acid (2,3-DBP) [2,3-DBP-adduct], the condensation polymerization was performed with four different monomers of two intermediate products, 1,4-butanediol, and adipic acid to obtain four-components copolymer. In the condensation polymerization, the content of phosphorus was fixed to be 2wt%, and the content of 2,3-DBP that provides bromine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing phosphorus and bromine as DTBA-10C, -20C, -30C. Average molecular weight and polydispersity index of the preparation of DTBAs were decreased with increasing 2,3-DBP content because of increase of hydroxyl group that retards reaction. We found that the thermal stability of the prepared DTBAs increased with bromine content at high temperature.
        4,500원
        67.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.
        4,000원
        68.
        2007.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.
        4,000원
        69.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Three phosphorus functional groups were introduced in one structural unit of polymer backbone to enhance the flame retardancy of PU coatings. In the first step, we synthesized tetramethylene bis(orthophosphate) (TBOP) that contained two phosphorus functional groups in one structural unit. In the next step, we synthesized modified polyesters (ATBTP-10C, -20C, -30C) that contained triphosphorus group using TBOP, 1,4-butanediol, trimethylolpropane, adipic acid, and another functional monomer, phenylphosphonic acid (PPA). The amount of PPA in ATBTPs was adjusted from 10 wt% to 30 wt%. The structure and characteristics of ATBTPs were examined using FT-IR, NMR, GPC, and TGA analysis. From the thermo-behavior test of diphosphorus modified polyester (ATBT) and ATBTPs, the afterglow of ATBT, ATBTP-10C, ATBTP-20C, and ATBTP-30C were 24.7, 27.1, 29.0, and 31.7%, respectively. It was found from this result that the afterglow increased with the amount of PPA component.
        4,000원
        70.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prepare high-solid coatings, acrylic resins, HSCs [poly (EA/EMA/2-HEMA/CLA)] that contain 90% solid, were synthesized by copolymerization of ethyl acrylate (EA), ethyl methacrylate (EMA), 2-hydroxyethyl methacrylate (2-HEMA) and caprolactone acrylate (CLA). The high-solid coatings named as CHSCs (HSCs/HDI-trimer) were prepared by the curing reaction between the acrylic resins containing 90% solid contents and the isocyanates (HDI-trimer) curing agent room temperature. The curing behavior and various properties were examined on the film coated with the both high-solid coatings. The glass transition temperatures (Tg) of CHSCs increased proportionally with increasing the predicted Tg value by Fox equation, and had nothing to do with the solid contents. The prepared film showed good properties for 60˚ specular gloss, impact resistance, cross-hatch adhesion and heat resistance, and bad properties for pencil hardness, drying time, and pot-life. Among the film properties, the heat resistance was very excellent and could be explained by the introduction of functional monomers of CLA.
        4,200원
        71.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to obtain the maximum flame retardancy with the minimal deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorous functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kind of intermediates to obtain copolymer. The modified polyesters containing chlorine and phosphorous (ATBA-10C, -20C, and -30C) were synthesized by adjusting the contents of chlorine compound (dichloroacetic acid, 10, 20, 30 wt%) with fixed the content of phosphorous compound (2 wt%). The PU flame-retardant coatings (TTBAH -10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorous were inferior to those with phosphorous only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, Complete combustion time of ATBAHs were 259~347 seconds, which means that the prepared coatings are good flame-retardant. With the 45˚ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are 1st grade flame retardancy. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of 30~35%, which proves good flame retardancy of the prepared coatings. From the results of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds, it was found that the coatings containing both phosphorous and chlorine show higher flame retardancy than the coatings containing phosphorous alone. This indicates that some synergy effect of flame retardancy exists between phosphorous and chlorine.
        4,900원
        72.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline transient aluminas (-alumina) were coated on core particles (-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and -alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.
        4,000원
        73.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was focused on the maximization of flame-retardancy of polyesters by a synergism of simultaneously introduced chlorine and phosphorus into polymer chains of modified polyesters. To prepare modified polyesters, reaction intermediates, TD-adduct (prepared from trimethylolpropane/2,4-dichlorobenzoic acid (2,4-DCBA)) and TMBO (prepared from tetramethylene bis(orthophosphate)), were prepared first, then condensation polymerization of the prepared intermediates, adipic acid, and 1,4-butanediol were carried out. In the condensation polymerization, the content of phosphorus was fixed to be 2%, and the content of 2,4-DCBA that provides chlorine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing chlorine and phosphorus as ABTT-10C, -20C, -30C. Two-component PU flame-retardant coatings (ABTTC, ABTTC-10C, ABTTC-20C, ABTTC-30C) were prepared by the curing of synthesized ABTTs with a curing agent of allophanate/trimer at room temperature. To examine the film properties of the prepared PU flame-retardant coatings, film specimens were prepared with the prepared coatings. The film properties of ABTTC, ABTTC-10C and ABTTC-20C, which contain 0, 10 and 20wt% 2,4-DCBA, respectively, were proved to be good, whereas the film properties of ABTTC-30C, which contains 30wt% 2,4-DCBA, was proved to be a little bit poor. Two kinds of flame retardancy tests, ˚45Meckel burner method and LOI method were performed. With the ˚45Meckel burner method, three flame-retardant coatings except ABTTC showed less than 3.4cm of char length, and showed less than 2 seconds of afterflaming and afterglow. From this result, the prepared flame-retardant coatings were proved to have the 1st grade flame retardancy. With the LOI method, the LOI values of the coatings containing more than 10wt% 2,4-DCBA were higher than 30%, which means that the coatings possess good flame retardancy. From these results, it was found that synergistic effect in flame retardancy was taken place by the introduced phosphorus and chlorine.
        4,900원
        74.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To prepare weather-resistant silicone/acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by a radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The compositions of monomers were adjusted to fix the glass transition temperature of acrylic polymer for 20℃. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects for weatherability were examined. The presence of MPTS in silicone/acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the silicone/acrylic resins containing 30 wt% of MPTS had weather-resistant properties.
        4,500원
        75.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The PU flame-retardant coatings (TTBAH, ATBAH-10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorus were inferior to those with phosphorus only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, complete combustion time of ATBAHs were 259~347 seconds, which means that the prepared coatings are good flame-retardant. With the 45˚ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are first grade. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of 30~35%, which proves good flame retardancy of the prepared coatings. from the result of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds. it was found that the coatings containing both phosphorus and chlorine show higher flame retardancy than the coatings containing only phosphorus. This indicates that there exists, some synergy effect between coexisting phosphorus and chlorine.
        4,300원
        76.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prepare high-solid coatings, first acrylic resins (HSAs) which contain 80% solid were synthesized, and then the prepared resins were cured with isocyanate at room temperature. In the synthesis of HSAs, viscosity, number average molecular weight (Mn) and conversion were 1372~2700 cps, 1520~1650 and 83~87%, respectively. Among the four kinds of initiators used, tert-amylperoxy-2-ethyl hexanoate was the most proper one in the synthesis of HSAs. With increasing Tg values, viscosity increased rapidly and molecular weight increased slowly. As a result of the examination of coated films, it was found that 60˚ specular gloss, impact resistance, heat resistance and cross-hatch adhesion were good, and pencil hardness, drying time and pot life were poor.
        4,000원
        77.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PU type flame-retardant coatings (TBAO/L-75, TBAOL ; TBAO/N-100, TBAON) were prepared by blending bromine-containing modified polyester (TBAO) which was synthesized in our earlier work. with two kinds of isocyanate curing agents, Desmodur L-75 and Desmodur N-100. Physical properties of the prepared flame-retardant coatings were tested. TBAOL shows better hardness than TBAON, while TBAON shows better viscosity, accelerated weathering resistance, yellowness index and lightness index difference than TBAOL. There were no remarkable differences in fineness of grind, 60˚ specular gloss, cross-hatch adhesion, and abrasion resistance of TBAOL and TBAON. There was no discernable difference in flame-retardancy between the two flame-retardant coatings, TBAOL and TBAON. When the content of tribromo acetic acid, which is flame-retarding component, was 30wt% the LOI value was in a range of 29~30%, which indicates that the two coatings are good flame-retardant coatings.
        4,000원
        78.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is attempted to develop flame retardant polyurethane coatings, which have received significant attention in recent years. It is the purpose of this study to synthesize new reactive polyurethane coatings containing halogen. Lactone based modified polyester polyols, using trichlorobenzoic acid as chlorine moiety (TBAOs) were synthesized. These polyesters were cured with isophorone diisocyanate (IPDI)-isocyanurate at room temperature (TBAPUs). Physical properties of these flame retardant coatings were similar with those of non-flame retardant coatings. The flammability of coatings was strongly dependent on the chlorine contents. We found that the increasing chlorine contents showed better flame retarding properties and that, however, they also resulted in more smog generation during combustion. The detailed results of flammability test using various methods indicated 24~26% in LOI and 3.7~5.3 cm char length in 45˚ Meckel burner method.
        4,300원
        79.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anti-corrosive coatings for steel structures with an alternative anti-corrosive pigment, polyaniline was prepared and anti-corrosive characteristics of the prepared coatings were investigated. The structure of the polyaniline was identified by using FT-IR, UV/Vis. and TGA analysis, and the anti-corrosive properties were analyzed from the results of the salt spray experiment. We found that the anti-corrosion properties of the prepared coatings varied in accordance with the types of primer coating resins as well as with the existence and nonexistence of the top coating. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using the single-packaged urethane resin as the primer coating resin and the urethane resin as the top coating resin.
        4,000원
        1 2 3 4 5