검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,041

        62.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the physical model and governing equations of a shallow arch with a moving boundary were studied. A model with a moving boundary can be easily found in a long span retractable roof, and it corresponds to a problem of a non-cylindrical domain in which the boundary moves with time. In particular, a motion equation of a shallow arch having a moving boundary is expressed in the form of an integral-differential equation. This is expressed by the time-varying integration interval of the integral coefficient term in the arch equation with an un-movable boundary. Also, the change in internal force due to the moving boundary is also considered. Therefore, in this study, the governing equation was derived by transforming the equation of the non-cylindrical domain into the cylindrical domain to solve this problem. A governing equation for vertical vibration was derived from the transformed equation, where a sinusoidal function was used as the orthonormal basis. Terms that consider the effect of the moving boundary over time in the original equation were added in the equation of the transformed cylindrical problem. In addition, a solution was obtained using a numerical analysis technique in a symmetric mode arch system, and the result effectively reflected the effect of the moving boundary.
        4,000원
        63.
        2022.05 구독 인증기관·개인회원 무료
        During normal and off-normal conditions, the concrete structures of dry storage system for spent nuclear fuel must maintain structural integrity. A stress-strain curve is the most important key factor for structural integrity evaluation. The ASTM C39 specifies the concrete specimen geometry for the static compression test. However, there is no standard specimen size for intermediate stain rate, and it is not easy to maintain consistency among all test results because the failure tendency is different from each other. In order to account for the strain rate effects on concrete, the dynamic increase factor (DIF) is conventionally addressed by dividing dynamic strength by static strength. However, the DIF value considers only the strength of concrete and does not describe the overall behavior of concrete, such as a stress-strain relation. The objective of this study is to propose proper specimen geometry for the concrete dynamic compression test by several parametric study. The static compression simulation results with the specimen specified in ASTM C39 showed the constant strain distribution in a cylindrical specimen. However, as the strain rate increases, the strain state in specimen showed a nonuniform with the same geometry of ASTM C39. The non-uniform strain state in the specimen deteriorates the consistency and accuracy of the compression test. Therefore, we presented the specimen shape and size to form a uniform strain state through radial direction by drilling a hole in the axial direction. We analyzed two specimens using ABAQUS with the concrete damaged plasticity model, one with a hole at the center and the other without the hole. As a result, the strain distribution became more uniform than the specimen without the hole. Based on the results, we proposed the specimen shape and size for the intermediate strain rate compression test.
        64.
        2022.05 구독 인증기관·개인회원 무료
        Concrete structures of spent nuclear fuel interim storage facility should maintain their shielding ability and structural integrity during normal, off-normal and accident conditions. The concrete structures may deteriorate if the interim storage facility operates for more than several decades. Even if deterioration occurs, the concrete structures must maintain its unique functions (shielding and structural integrity). Therefore, it is necessary to establish an analysis methodology that can evaluate whether the deteriorated concrete structure maintains its integrity under not only normal or off-normal condition but also accident condition. In accident conditions such as tip over and aircraft collision, both static material properties and dynamic properties of the concrete are required to evaluate the structural integrity of the concrete structures. Unlike the calculated damage results for the static deformation of the concrete structure, it is very difficult to accurately estimate the damage values of the degraded concrete structures where an aircraft collides at a high strain rate. Therefore, the present authors have a plan to establish a database of the dynamic material properties of deteriorated concrete and implement to a Finite Element Analysis model. Prior to that, dynamic increase factors described in a few technical specifications were investigated. The dynamic increase factor represents the ratio of the dynamic to static strength and is normally reported as function of strain rate. In ACI-349, only the strain rate is used as a variable in the empirical formula obtained from the test results of specified concrete strengths of 28 to 42 MPa. The maximum value of dynamic increase factor is limited to 1.25 in the axial direction and 1.10 in the shear direction. On the other hand, in the case of the CEB model, static strength is included as variables in addition to the strain rate, and a constitutive equation in which the slope changes from the strain rate of 30 /s is proposed. As plotting the two dynamic increase factor models, in the case of ACI, it is drawn as a single line, but in the case of CEB, it is plotted as multiple lines depending on the static strength. The test methods and specimen sizes of the previously performed tests, which measured the concrete dynamic properties, were also investigated. When the strain rate is less than 10 /s, hydraulic or drop hammer machines were generally used and the length of the specimens was more than twice the diameter in most cases. However, in the case of Split Hopkinson Pressure Bar tests, the small size specimens are preferred to minimize the inertia effect, so the specimens were small and the length was less than twice the diameter. We will construct the dynamic properties DB with our planned deteriorate concrete specimen test, and also include the dynamic property data already built in the previous studies.
        65.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Interest in the rammed construction method using eco-friendly materials is increasing in modern architecture. However, the work of construction is not convenient and will require a lot of manpower and time. This study proposes an automation compactor consisting of a compactor frame, crank arm, servo motor, wire, and a compactor hammer. The compactor hammer is fixed on the wire to achieve up-down movement by servo motor. And the state of up-down movement of the proposed compactor in 4 steps was had a dynamic analyzed. Through the actual compression experiment, the reliability of the proposed compactor is verified and is expected to be used in rammed earth construction.
        4,000원
        66.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        레일장대화는 무도상교량의 소음, 진동, 충격 등의 문제점을 해결할 수 있는 경제적인 방안 중 하나이며, 최근 연동식 침목고정장치 를 이용한 SSF 공법이 개발된 바 있다. 이 연구에서는 연동식 침목고정장치 적용 시 레일 높이 조정 및 열차 통과 시의 충격 흡수를 목 적으로 교량침목 하부에 삽입되는 침목패드의 최적 연직강성을 결정하는 과정을 제시하였다. 침목패드의 최적 연직강성 결정을 위하 여 관련 기존 기준을 검토하였으며, 유연다물체동적해석을 통하여 침목패드의 연직강성 변화에 따른 주행안전성, 승차감 및 궤도의 안전성에 대한 지표들과 교량 응답 변화를 검토하였다. 유연다물체동적해석은 상용프로그램인 ABAQUS와 VI-Rail을 이용하여 수행 하였다. 수치해석은 30m 상로판형교에 대한 교량모델을 이용하여 수행하였으며, 침목패드의 연직강성이 7.5kN/mm ~ 240kN/mm로 변화할 때 ITX 새마을, KTX 및 화차 통과 시의 응답을 산정하였다. 수치해석에 적용된 궤도구성품 조건에서 침목패드의 최적 강성은 100kN/mm로 산정되었다.
        4,000원
        68.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 서로 다른 디자인의 시표를 사용하여 원거리 자각적 주시시차 교정 전, 후의 정적 및 동적입체시를 비교 및 분석해 보고자 하였다. 방법 : 12명(남자 7명, 여자 5명)의 시각적 불편함을 느끼는 대상자를 선정하였다. MKH 차트, 차트프로젝터 십자시표를 사용하여 원거리 수평 주시시차를 교정하였고, 주시시차 교정 전, 후의 원거리 정적 및 동적 입체시력, 원거리 입체시깊이를 측정하였다. 결과 : MKH 차트, 차트프로젝터 십자시표에서 자각적으로 측정된 원거리 수평 주시시차 교정 값은 각각 0.77±0.53 △, 0.29±0.30 △으로 측정되었고 유의한 차이가 있었다(p=0.011). 주시시차 교정 전 원거리 정적입 체시력은 102.50±73.99″이었고, MKH 차트, 차트프로젝터 십자시표를 사용한 교정 후는 각각 42.50±29.27″ (p=0.003), 50.00±44.52″(p=0.003)로 유의한 감소가 있었다. 주시시차 교정 전 원거리 동적입체시력은 24.46±6.60″이었고, MKH 차트, 차트프로젝터 십자시표를 사용한 교정 후는 각각 15.26±7.61″(p=0.008), 17.56±5.67″(p=0.019)로 유의한 감소가 있었다. 주시시차 교정 전 원거리 입체시깊이는 1,107.08±52.72 mm 이었고, MKH 차트, 중심융합자극점이 있는 차트프로젝터 십자시표를 사용한 교정 후는 각각 1,136.08±62.40 mm(p=0.002), 1,120.00±51.52 mm(p=0.028)로 유의한 증가가 있었다. 결론 : 시표의 디자인에 따른 원거리 자각적 주시시차 교정 값에는 유의한 차이가 있었고, 주시시차 교정 후의 정적 및 동적입체시는 두 시표에서 모두 유의하게 향상되었다. 따라서 원거리 자각적 주시시차 교정은 입체시의 개선에 긍정적인 효과를 줄 수 있는 것으로 생각된다. 본 연구에서는 MKH 차트를 통해 주시시차를 교정한 후 입 체시가 상대적으로 가장 많이 향상되었다.
        4,800원
        69.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Currently, the construction trend of high-rise structures is changing from a cube-shaped box to a free-form. In the case of free-form structures, it is difficult to predict the behavior of the structure because it induces torsional deformation due to inclined columns and the eccentricity of the structure by the horizontal load. For this reason, it is essential to review the stability by considering the design variables at the design stage. In this paper, the position of the weak vertical member was analyzed by analyzing the behavior of the structure according to the change in the core position of the twisted high-rise structures. In the case of the shear wall, the shear force was found to be high in the order of proximity to the center of gravity of each floor of the structure. In the case of the column, the component force was generated by the axial force of the outermost beam, so the bending moment was concentrated on the inner column with no inclination.
        4,000원
        70.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the frequency response analysis of a bistable electromagnetic vibration energy harvester is performed, based on an electromagnetic oscillator model, to investigate its nonlinear dynamic behaviors. The displacement and current responses are obtained, by the direct integration of the model, with the variations of mechanical and electromagnetic parameters. It is shown that the operating frequency band of the system can be broadened by the increase in mechanical parameters(inertial mass and Q-factor), but it does not depend significantly on any electromagnetic parameters(an external load resistance and the internal resistance of a coil). On the other hand, the output current of the energy harvester is affected only by the electromagnetic parameters (specifically, the sum of two resistances). Thus, the mechanical and electromagnetic parameters of the electromagnetic energy harvester must be designed properly, respectively, for broader and more efficient performance.
        4,000원
        71.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Individuals with calf muscle shortening may have decreased dynamic balance. Objects: This study aimed to investigate the effect of mobilization with movement (MWM) and myofascial release (MFR) on kinematic changes in dynamic balance in individuals with calf muscle shortening. Methods: Thirteen participants were randomly assigned to the MWM or the mobilization with movement added myofascial release (MWM-MFR) group. The MWM group received treatment with only MWM, whereas the MWM-MFR group was treated with MWM and MFR. Pre- and post-intervention passive range of motion (PROM), maximum reaching lengths, and modified star excursion balance test (MSEBT) results were compared for all participants. Wilcoxon signed-rank test and Mann-Whitney U test were used for statistical analysis. Results: The results showed significant within-group differences in ankle PROM, but no significant between-group differences. The maximum reaching length in the MWM-MFR group in the posterolateral direction was significantly different before and after the intervention (p = 0.005). This group also showed significantly reduced ankle abduction in MSEBT during the posteromedial direction section 3 (p = 0.007) and posterolateral direction section 5 (p = 0.049) compared with the MWM group. Conclusion: Combined MWM and MFR intervention improves ankle stability in the coronal plane during the posteromedial and posterolateral forward mo
        4,000원
        72.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Foot drop is a common symptom in stroke patients. Tape applications are widely used to manage foot drop symptoms. Previous studies have evaluated the effects of static and dynamic balance and gait on foot drop using kinesiology tape; however, only few studies have used dynamic tape application in stroke patients with foot drop. Objects: The purpose of this study was to investigate the immediate effects of dynamic taping, which facilitates the dorsiflexor muscle, on static and dynamic balance and gait speed in stroke patients with foot drop. Methods: The study included 34 voluntary patients (17 men, 17 women) with stroke. The patients were randomly assigned to the experimental group (n = 17), wherein dynamic taping was used to facilitate the dorsiflexor muscle, or the control group (n = 17), wherein kinesiology taping was used. Before the taping application, velocity average, path-length average, Berg balance scale, and timed up and go test (TUG) were recorded to measure static and dynamic balance, whereas the 10-meter walk test (10MWT) was used to measure gait speed. After the taping application, these parameters were re-evaluated in both groups. Repeated measure analysis of variance was used. Statistical significance levels were set to α = 0.05. Results: Except for the 10MWT scores in the control group, significant differences were noted in all the parameters measured for static and dynamic balance and gait speed between the pre and post-test (p < 0.05). However, the parameters showed significant interaction effects between group and time in the TUG and 10MWT (p < 0.01). Conclusion: These results indicate that compared with kinesiology taping, dynamic taping used in chronic stroke patients with foot drop had a more significant effect on dynamic balance and gait speed.
        4,000원
        73.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Neck pain is a major health problem in developed countries and has a lifetime prevalence of 50%. Major problems include a reduced cervical range of motion, muscle stiffness, dysfunction, postural changes, and decrease in psychosocial level. Objects: This study aimed to investigate the effects of applying the upper trapezius inhibition dynamic taping to patients with chronic neck pain on their neck pain, functional level, cervical range of motion, psychosocial level, and neck posture. Methods: The study design was a randomized controlled trial. A total of 40 patients with neck pain participated in this study and were randomly assigned to a Dynamic Taping group (n = 20) or Sham Taping group (n = 20). In both groups, basic intervention cervical pain control therapy and shoulder stabilization exercise program were performed. In addition, dynamic taping and sham taping were applied to participants in the Dynamic Taping and Sham Taping groups to inhibit the trapezius muscle, respectively. All interventions were performed three times a week and a total of 12 times for 4 weeks, and the participants’ neck pain, functional impairment level, cervical range of motion, psychosocial level, and neck posture were measured and compared before and after the intervention. Results: Both groups showed significant differences in neck pain, functional level, cervical range of motion, psychosocial level, and neck postural before and after the intervention (p < 0.05). Moreover, there were significant differences between the two groups regarding the functional level and neck posture (p < 0.05). Conclusion: Inhibition dynamic taping of the upper trapezius muscle suppression is an effective method with clinical significance in reducing pain in individuals with chronic neck pain and improving the functional level, cervical range of motion, psychosocial level, and neck posture.
        4,000원
        75.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to identify the dynamic behavior of a cement concrete paving machine (paver) by measuring its response using accelerometers. This is because the dynamic behavior of pavers affects the quality of data from various applications of IoT sensors, such as laser, ultrasonic, optical sensors and so on. Therefore, it is believed that the understanding of dynamic behaviors can contribute to the effective use of various IoT sensors for the acquisition of real-time quality control data in pavement construction. METHODS : Dynamic signals are obtained using accelerometer sensors to identify the dynamic characteristics of paving machines. The main parameters for acquiring dynamic signals are the status of the machine’s operating or standby conditions, and available locations for attaching various IoT sensors. Time domain data are logged at a particular sampling speed using a low-pass filter, subsequently, they are converted to digital data, which are analyzed on three rectangular axes. In addition frequency analysis is conducted on the measured data for identifying the peak frequencies, via FFT (Fast-Fourier-Transform) using MATLAB. RESULTS : The magnitude of the x-directional vibration is higher than that of any other direction under the paver’s operating or standby condition. However, signals from the smoother beam show that the z-directional vibration is more significant in the operating status. It means that the primary vibration depends on the location. Furthermore, the peak frequencies are quite various depending on the status of a paver and its sensing location. CONCLUSIONS : The magnitude of machine vibration and peak frequencies at each status or location are identified from time- and frequency-domain data. When using IoT sensors for quality control or monitoring pavements in construction, the dynamic characteristics of a paver should be considered to mitigate the interference of signals from the paver body or its elements.
        4,000원
        77.
        2021.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Considering the kinetic chain of the lower extremity, a pronated foot position (PFP) can affect malalignment of the lower extremity, such as a dynamic knee valgus (DKV). Although the DKV during several single-leg movement tests has been investigated, no studies have compared the differences in DKV during a single-leg step down (SLSD) between subjects with and without PFP. Objects: The purpose of this study was to compare the DKV during SLSD between subjects with and without PFP. Methods: Twelve subjects with PFP (9 men, 3 women) and 15 subjects without PFP (12 men, 3 women) participated in this study. To calculate the DKV, frontal plane projection angle (FPPA), knee-in distance (KID), and hip-out distance (HOD) during SLSD were analyzed by twodimensional video analysis software (Kinovea). Results: The FPPA was significantly lower in PFP group, compared with control group (166.4° ± 7.5° and 174.5° ± 5.5°, p < 0.05). Also, the KID was significantly greater in PFP group, compared with control group (12.7 ± 3.9 cm and 7.3 ± 2.4 cm, p < 0.05). However, the HOD not significantly differed between two groups (12.7 ± 1.7 cm and 11.4 ± 2.5 cm, p > 0.05). Conclusion: The PFP is associated with lower FPPA and greater KID. When assess the DKV during SLSD, the PFP should be considered as a crucial factor for occurrence of DKV.
        4,000원
        1 2 3 4 5