검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,839

        61.
        2023.05 구독 인증기관·개인회원 무료
        The purpose of this study was to examine whether galvanic corrosion of copper occurs by inserting a third barrier layer with a higher corrosion potential than copper between copper and cast iron when the copper layer is locally perforated by pitting or partial corrosion. A triple layer composed of copper, inserted metal, and carbon steel was manufactured by cold spray coating of inserting metal powders such as Ag, Ni, and Ti on carbon steel plate followed by Cu coating on it. First, the corrosion properties were evaluated electrochemically for each metal coating. As a result of Tafel plot anaylsis in KURT groundwater condition, the corrosion potential of Fe (-567 mV) was much lower than that of Cu (-91 mV), and the corrosion potential of Ni (-150 mV) was also lower than that of Cu. Therefore, Ni was likely to corrode before Cu. However, the corrosion current of Ni was lower than that of the Cu. In the galvanic specimen where the copper and inserting metal were exposed together, Cu-Fe was much lower corrosion potential of -446 mV, and the corrosion potential of Cu-Ti, Cu-Ni, and Cu-Ag were slightly higher than that of Cu. Therefore, it seemed that Ag, Ni, and Ti all might promote galvanic corrosion of surrounding copper when the copper layer was perforated to the inserted metal layer. If the metal insertion presented in this study operates properly, the disposal container does not need to worry about the partial corrosion or non-uniform corrosion of external copper layer.
        62.
        2023.05 구독 인증기관·개인회원 무료
        The damage ratio of Spent Nuclear Fuel (SNF) is a very important intermediate variable for dry storage risk assessment which require an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a sensitivity analysis was performed to evaluate the importance of the damage parameters that need to be calibrated for the simulation of zircaloy-4 cladding failure using computational mechanics. The simulation model was generated from a microscopic image of the cladding with hydride. The image segmentation method was used to separate the Zircaloy-4, hydride, and hydride- Zircaloy matrix interfaces to create a pixel-based finite element model. The ring compression test (RCT) was simulated because the resistance of the cladding under pinch load can be evaluated by this test. It was assumed that the damage starts with the formation and growth of voids or small cracks in the material, which grow and combine to form larger cracks, eventually leading to the complete fracture of the material. Therefore, the ductile damage criterion was applied to all materials to simulate crack formation and propagation. The sensitivity analysis was performed based on the design of experiments using L8 orthogonal array. The effects of five factors on the fracture resistance of hydrided cladding were quantified, and they are the fracture strains describing the damage initiation in zircaloy-4 matrix, hydride, and hydride-zirconium matrix, and yield stress and Young’s modulus for hydride-zirconium matrix. Information on those parameters are hardly available in literature and experimental data which enable the estimation of those are also very rare. It is planned to build a computational model which can accurately simulate the fracture behavior of hydrided cladding by calibrating significant fracture parameters using reverse engineering. The results of this study will help to figure out those significant parameters.
        65.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해수이차전지는 해수를 양극으로 사용하는 차세대 이차전지이다, 해양 자원을 사용하여 가격 경쟁력과 높은 친환경성, 그리고 해양 애플리케이션에 적합한 구조를 가진다. 이러한 장점을 기반으로 지속적 연구개발을 통해 자연 해수 노출을 가정한 파우치 타입 및 각형 타입이 개발되어 왔다. 그러나 이차전지는 전기적 특성상 사용 환경에 따라 용량 및 내부 임피던스가 달라진다. 이러한 특성은 전지 의 수명 예측에 활용될 뿐만 아니라 활용하고자 하는 상황에 맞는 용량과 출력에 직접적인 영향을 미친다. 따라서 본 논문에서는 해수이 차전지의 사용 환경에 따른 용량 측정과 SoC-OCV 측정 방법을 통한 내부 저항을 분석하고자 한다.
        4,000원
        77.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Laser-induced graphene (LIG) uses a CO2 infrared laser scriber for transforming specific polymer substrates into porous graphene. This technique is simple, scalable, low-cost, free of chemicals, and produces a 3D graphene for applications across many fields. However, the resulting 3D graphene is highly sensitive to the lasing parameters used in their production. Here, we report the effects of power, raster speed, number of lasing passes (with and without spot overlapping) on the resulting LIG structure, morphology, and sheet resistance, using a polyimide (PI) substrate. We find that the number of lasing passes, laser spot overlapping and brand of PI used had a strong influence on the quality of the LIG, measured in terms of the IG/ ID and I2D Raman bands and sheet resistance. Increasing number of passes and overlapping of laser spots led to increased LIG pore sizes, larger graphene scales, and reduced sheet resistance. Furthermore, the over-the-counter desktop CO2 laser engraving unit used introduced additional restrictions that limited the quality of the LIG produced, particularly due to inconsistent control of the laser scribing speed and a poor thermal management of the laser unit.
        4,000원
        78.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Devices with negative differential transconductance (NDT) and negative differential resistance (NDR) have shown a strong potential for digital electronics with high information density due to their N-shaped current–voltage (I–V) characteristics leading to multiple threshold voltages ( Vths). The 2D materials, such as graphene, hBN, MoS2, WS2, etc., offer an attractive platform to achieve NDT and NDR because of the absence of dangling bonds on the surface, leading to a high-quality interface between the layers. The 2D materials' unique property of the weak van der Waals (vdW) interactions without dangling bonds on the heterostructure devices shows the way for the applications more than-Moore devices. This review holds a well-timed overview of 2D materials-based devices to develop future multi-valued logic (MVL) circuits exhibiting high information density. Notably, the recent advances in emerging 2D materials are reviewed to support the directions for future research on MVL applications.
        5,200원
        79.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고추역병균(Phytophthora capsici)은 고추 생육 전반에 걸쳐 병을 발생시켜 농가 소득에 큰 손실을 일으키고 있다. 고추 역병균 저항성은 양적 형질 유전자좌(Quantitative Trait Loci, QTL)에 의해 조절되며 주동 유전자는 고추의 5번 염색체에 존재한다고 보고 되었지만, 후보 유전자의 선발 및 저항성 유전자 규명 연구는 아직 초기 단계이다. 특히, 고추는 형질전환이 어려운 작물로써 병원균과의 상호작용 연구를 통한 저항성 유전자 동정에 제한이 많다. 반면 고추와 같은 가지과 작물인 담배(Nicotiana benthamiana)는 병원균 상호작용 모델로 알려져 형질전환을 통해 저항성 유전자 규명에 활용된다. 본 연구에서는 고추 역병 저항성 기작 규명을 위한 기초 연구로써, 식물 저항성 유사 유전자(Resistance Gene Analog, RGA)를 선발하고, 이들 유전자들에 대한 담배 형질전환 기법 최적화 연구를 수행하였다. 고추 5번 염색체에 존재하는 고추 역병 저항성 분자표지들을 분석하여 RGA 후보 유전자인 CaNBARC105, CaNBARC112 유전자를 동정하였다. 이들 유전자들에 대해 Agrobacterium tumefaciens를 매개체로 하여 고추 RGA가 삽입된 담배 형질전환체를 개발하였다. 형질전환 여부는 유전자 특이적인 서열을 이용한 genomic PCR과 RT-PCR 검증을 통해 이들 형질전환 된 담배들의 생육 및 발달에 영향이 없다는 것을 확인하였다. 본 연구는 향후 고추 병 저항성 후보 유전자들이 삽입된 담배 형질전환체는 고추 역병 저항성 유전자 규명 및 기작 연구에 기반이 될 것이다.
        4,000원
        80.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bacterial phytopathogen Pectobacterium causes soft rot disease in several vegetable crops globally, resulting in heavy agricultural losses at both the pre and postharvest stages. The present work was carried out to screen Kimchi cabbage genetic resources conserved at the National Agrobiodiversity Center, Rural Development Administration, Korea, for resistance against the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum KACC 21701 over a period of three years (from 2020 to 2022). Infection of the phytopathogen was carried out at four-leaf stage and for each accession, twenty-five plants per germplasm were infected with KACC 21701. Kimchi cabbage cultivars Wangmatbaechu, Seoulbaechu, and CR Kiyoshi were used as control. Seven-days post-infection, the Disease Index (DI) values were manually recorded from zero to four, zero matched perfectly heathy plants and four completely dead plants. The 682 accessions of Kimchi cabbage exhibited varying degrees of disease resistance to KACC 21701 and thirty accessions, exhibiting a DI≤2, were considered for replication studies. During the replication studies, four landrace germplasms (IT102883, IT120036, IT120044, and IT120048) and one cultivar (IT187919) were confirmed to be moderately susceptible to KACC 21701. Results of the preliminary screening as well as replication studies were documented for the all the 682 germplasms. Addition of such information to the passport data of stored germplasms might serve as potential bio-resource for future breeders and researchers to develop resistant varieties or study the mechanisms involved in resistance of plants to such phytopathogen.
        4,000원
        1 2 3 4 5