검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 339

        81.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper relates to the study of load characteristics applicable to wind turbine generators induced by earthquakes. An artificial design earthquake wave generated through the target spectrum and the envelope function of Richter Magnitude Scale (ML) 7.0 as in ASCE4-98 was created. A simulation of earthquake loads were performed according to the design load cases (DLC) 9.5~9.7 of GL guidelines. Additionally, simulation of seismic loads experienced by Wind Turbines installed in the Gyeongju region were carried out utilizing artificial earthquakes of ML 5.8 simulating the real earthquakes during the Gyeongju Earthquakes of Sept. 2016.
        4,000원
        82.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the seismic performance of structures, friction pendulum system (FPS) is the most commonly used seismic isolation device in addition to lead rubber bearing (LRB) in high seismicity area. In a nuclear power plant (NPP) with a large self weight, it is necessary to install a large number of seismic isolation devices, and the position of the center of rigidity varies depending on the arrangement of the seismic isolation devices. Due to the increase in the eccentricity, which is the difference between the center of gravity of the nuclear structure and the center of stiffness of the seismic isolators, an excessive seismic response may occur which could not be considered at the design stage. Three different types of eccentricity models (CASE 1, CASE 2, and CASE 3) were used for seismic response evaluation of seismically isolated NPP due to the increase of eccentricity (0%, 5%, 10%, 15%). The analytical model of the seismic isolation system was compared using the equivalent linear model and the bilinear model. From the results of the seismic response of the seismically isolated NPP with increasing eccentricity, it can be observed that the effect of eccentricity on the seismic response for the equivalent linear model is larger than that for the bilinear model.
        4,200원
        84.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 트러스의 형태를 바꿔가며 엇갈린 트러스(STF) 시스템의 내진성능을 평가하는 것이다. 예제 구조물은 10층의 철골조 사무실 건물이며, 시스템별로 각각 프랫트러스, 하우트러스, 와렌트러스, 케이트러스와 비렌딜트러스를 적용 하였다. 중력하중, 풍하중, 지진하중을 고려한 구조해석을 실시하여 부재에 높은 DCR을 만족하는 단면을 산정한 후 고유주 기, 밑면전단력과 층간변위를 산출하였다. 그 후, 역량스펙트럼법을 통해 1.2배의 설계지진(DE)과 최대고려지진(MCE)에 대 한 성능점을 산정하고, STF 시스템의 항복여부 및 소성힌지의 분포를 파악하여 구조기준에서 제시한 목표성능수준을 만족 하는지 살펴보았다. 평가 결과, 모든 시스템이 해당 목표성능수준을 만족하였으며, 시스템의 경제성 및 효율성을 따져보았을 때, PR10이나 VR10이 가장 적합한 것으로 나타났다.
        4,000원
        85.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.
        4,000원
        86.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, the number of earthquakes has increased worldwide. There has been an extreme increase on the Korea Peninsula, which is considered a safety zone for earthquakes. In particular, in the event of earthquakes, most structures on the Korea Peninsula are severely damaged, because most are not designed to withstand them. Damage to and destruction of civil structures, such as bridges, nuclear facilities, and dams, is worse than that of other structures. It is necessary to evaluate and predict the extent of damage by earthquake magnitude, as the magnitude of earthquakes is increasing as well as the frequency. A major feature of the occurrence of earthquakes is uncertainty. For this reason, it is necessary to adopt a stochastic approach, and studies using this approach are increasing. However, although there have been several studies on bridges and nuclear facilities, there have been few studies on probabilistic seismic risk evaluation for multi-functional weirs. Thus, this study presents 3D multi-functional weirs and performs a time history analysis by using LS-DYNA, a general structure analysis program. Probabilistic seismic fragility assessment is conducted by Monte Carlo simulation.
        4,000원
        87.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In Korea, the occurrence frequency of earthquakes has recently increased, compared with the past. So, the various damages for cultural properties due to earthquake can be expected, and especially fortress structure is vulnerable to earthquake. Therefore, the resonable seismic characteristics evaluation is required to secure the safety for fortress structure with the various construction and configuration types. Also, we should consider the various applied load conditions as design variables. To this end, this study classifies fortress structures according to the construction and configuration types, and then applies the discrete element method to model and analyze fortress structures. Finally, the seismic characteristics is evaluated through slip condition due to the analysis results considering the various design variables.
        4,000원
        88.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to establish a seismic resistance performance evaluation method that makes sure to secure the seismic resistance performance of the existing mid-low story reinforced concrete structures. This study focuses on the development of the seismic resistance performance evaluation method for the overall seismic resistance performance evaluation on the buildings by applying fuzzy theory. This seismic resistance performance evaluation method considers the mutual relations among the type of force, the type of member, the type of story, and the states of deterioration of the buildings. The total seismic resistance performance index from this method was calculated by the intensity weight of each evaluation item, fuzzy measure, fuzzy integration. Moreover, the evaluation methodology was established in this study to identify the performance level of the Immediate Occupancy, Life Safe, Collapse Prevention by applying the fuzzy theory.
        4,000원
        89.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Various seismic isolation methods are being applied to bridges and buildings to improve their seismic performance. Most seismic isolation systems are the structural seismic isolation systems. In this study, the seismic performance of geotechnical seismic isolation system capable of isolating the lower foundation of the bridge structure from ground was evaluated. The geotechnical seismic isolation system was built with teflon, and the model structure was made by adopting the similitude law. The response acceleration for sinusoidal waves of various amplitudes and frequencies and seismic waves were analyzed by performing 1-G shaking table experiments. Fixed foundation, Sliding foundation, and Rocking foundation were evaluated. The results of this study indicated that the Teflon-type seismic foundation isolation system is effective in reducing the acceleration transmitted to the superstructure subject to large input ground motion. Response spectrum of the Rocking and Sliding foundation structures moves to the long period, while that of Fixed foundation moves to short period.
        4,200원
        90.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nonlinear analysis for seismic performance evaluation of existing building usually takes 4~5 times more than linear analysis based on KBC code. To obtain accurate results from the nonlinear analysis, there are a lot of things to be considered for nonlinear analysis modeling. For example, reinforcing layout, applied load and seismic details affect behavior of structural members for the existing building. Engineer-oriented computerized system was developed for engineers to evaluate effective seismic performance of existing buildings with abiding by seismic design principles. Using the engineer-oriented program, seismic performance evaluation of reinforced concrete building was performed. Nonlinear hinge properties were applied with real time multiple consideration such as section layout, section analysis result, applied load and performance levels. As a result, the building was evaluated to satisfy LS(Life Safety) performance level. A comparison between engineer-oriented and program-oriented results is presented to show how important the role of structural engineer is for seismic performance evaluation of existing buildings.
        4,000원
        91.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.
        4,000원
        92.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Gyeong-Ju earthquake in the magnitude of 5.8 on the Richter scaleoccurred in September 12, 2016. Because there are many nuclear power plants (NPP) near the epicenter of the Gyeong-Ju earthquake, the seismic stability of nuclear power plants is becoming a social problem. In order to evaluate the safety of seismically isolated NPP, the seismic response of a NPP subjected to the Gyeong-Ju earthquake was compared with those of 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum (NSDS). A 2-node model and a simple beam-stick model were used for the seismic analysis of seismically isolated NPP structures. Using 2-node model, the effect of internal temperature rise, decrease of shear stiffness, increase of lateral displacement and decrease of vertical stiffness according to nonlinear behavior of lead-rubber bearing (LRB) were evaluated. The displacement response, the acceleration response, and the shear force response of the seismically isolated nuclear containment structure were evaluated using the simple beam-stick model. It can be observed that the seismic responses of the isolated nuclear structure subjected to Gyeong-Ju earthquake is significantly less than those to the artificial earthquakes corresponding to NSDS.
        4,000원
        93.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1970년대 이후 한국의 빠른 경제성장 동안에 수로나 철도 등 많은 지중구조물들이 건설되었다. 1988년에 내진설계가 의무 화되었으나, 1988년 이전의 지중 구조물들은 내진설계가 반영되지 않았다. 따라서, 이러한 지중 구조물들은 지진이 일어났을 때 안전성을 확보하기 위해 효과적인 내진 보강방법이 필요하다. 그러한 이유로, 본 연구에서는 새롭게 개발된 보강재를 이 용한 RC 박스 지중 구조물 우각부 보강공법의 내진성능에 대하여 분석하였다. 이 공법은 박스구조물 우각부에 Pre-flexed member를 설치하여 외력에 저항력을 증대시키는 원리이다. 타당성을 검증하기 위해서 새로이 개발된 보강재와 기존의 보강 재를 실험과 유한요소해석으로 비교하였다. 유한요소모델에서 강재의 비선형 모델은 J2 Plasticity Model을 기초로 하고 콘 크리트는 CEB-FIP MODEL CODE 1990로 모델링되었다. 또한, 설계반영을 위한 박스 구조물과 보강재와의 합성률을 산정 하였다. 보강재와 박스구조물은 Tie에 의해 완전 부착된 상태의 연결조건 하에서 해석이 수행되었으며, 하중-변위곡선에서 실험과 유한요소해석의 결과가 서로 일치하였다.
        4,000원
        94.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, an outrigger damper system has been proposed to reduce dynamic responses of tall buildings. However, a study on outrigger damper system is still in its early stages. In this study, time history analysis was performed to investigate the dynamic response control performance of outrigger damper. To do this, a actual scale 3-dimensional tall building model with outrigger damper system has been developed. El Centro earthquake was applied as an earthquake excitation. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. Analysis results, on the top floor displacement response to the earthquake load, was greatly effected by damping value. And acceleration response greatly was effected by stiffness value of damper system. Therefore, it is necessary to select that proper stiffness and damping values of the outrigger damper system.
        4,000원
        95.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seismic performance evaluation of existing building usually needs much time and man power, especially in case of nonlinear analysis. Many data interaction steps for model transfer are needed and engineers should spend much time with simple works like data entry. Those time-consuming steps could be reduced by applying computerized and automated modules. In this study, computational platform for seismic performance evaluation was made with several computerized modules. StrAuto and floor load transfer module offers a path that can transfer most linear model data to nonlinear analysis model so that engineers can avoid a lot of repetitive work for input information for the nonlinear analysis model. And the new nonlinear property generator also helps to get the nonlinear data easily by importing data from structural design program. To evaluate the effect of developed modules on each stages, seismic performance evaluation of example building was carried out and the lead time was used for the quantitative evaluation.
        4,000원
        96.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Damages of large embankment dams by recent strong earthquakes in the world highlight the importance of seismic security of dams. Some of recent dam construction projects for water storage and hydropower are located in highly seismic zone, hence the seismic performance evaluation is an important issue. While state-of-the-art numerical analysis technology is generally utilized in practice for seismic performance evaluation of large dams, physical modeling is also carried out where new construction technology is involved or numerical analysis technology cannot simulate the behavior appropriately. Geotechnical centrifuge modeling is widely adopted in earthquake engineering to simulate the seismic behavior of large earth structures, but sometimes it can’t be applied for large embankment dams due to various limitations. This study proposes a dynamic centrifuge testing method for large embankment dams and evaluated its applicability. Scaling relations for a case which model scale and g-level are different could be derived considering the stress conditions and predominant period of the structure, which is equivalent to previously suggested scaling relations. The scaling principles and testing method could be verified by modified modeling of models using a model at different acceleration levels. Finally, its applicability was examined by centrifuge tests for an embankment dam in Korea.
        4,000원
        97.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Piloti-type building is one of typical vertical atypical buildings. These buildings can fail by weak-story or flexible-story mechanism on the first story. They should be designed by taking into account the special seismic load, but those less than six stories are not required to confirm the seismic performance from structural engineers in Korea. For this reason, small-size pilloti-type RC buildings need to be checked for seismic performance. Based on this background, this study performed nonlinear dynamic analysis using the PERFORM-3D for small-size pilloti-type RC buildings and assessed their seismic performance. Examples are two through four story buildings with and without walls in the first story. The walls and columns in the first story satisfied the target performance in the basic of flexural behavior due to quite a large size and reinforcement. However, wall shear demands exceed shear strength in some buildings. When designed for KBC2009, wall shear strength exceed shear demand in some buildings, but still does not in others. Consequently, wall shear must be carefully checked in both existing and new small-size pilloti-type RC buildings.
        4,000원
        98.
        2016.04 구독 인증기관·개인회원 무료
        This study describes the seismic performance evaluation of bridge structures located in Daegu. Structure design criteria focuses on the collapse or brittle fracture of the bridges when the earthquake situation is given. Thus, this study describes the seismic safety evaluation based on the design of a spectrum of ASCE-7 KBC2009 of the United States, South Korea architectural structure was based on using 3D linear elastic finite element model using the ABAQUS platform bridges. If the target structure was found to be vulnerable to tensile stress than compressive stress appeared to be a case of displacement Z-axis displacement is dominant.
        99.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb‘s friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between lowand fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.
        4,000원
        100.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.
        4,200원
        1 2 3 4 5