검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 175

        81.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of CuO-SnO2/camphene slurry. Mixtures of CuO and SnO2 powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of CuO-SnO2 are unidirectionally frozen in a mold maintained at a temperature of -30oC for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at 650oC for 2 h, the green body of the CuO-SnO2 is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to 300 μm with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.
        4,000원
        82.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 역전기투석 응용을 위해 엔지니어링 고분자 기반의 이오노머와 다공성 폴리에틸렌 지지체를 사용 한 세공충진 이온교환막을 제조하고 이를 결합한 이오노머-세공충진 복합막을 제조하였다. 이온전도도가 높은 이오노머와 우 수한 기계적 강도를 가진 세공충진막을 결합함으로써 상용 이온교환막(AMX/CMX, Astom Corp., Japan) 대비 동등 수준의 전기화학적 특성 및 응용에 적합한 물리적 안정성을 확보할 수 있었다. 제조된 이오노머-세공충진 복합막을 이용하여 역전기 투석 성능을 평가한 결과 상용막 대비 음이온 교환막의 경우 86.4%, 양이온 교환막은 104.8% 수준의 우수한 발전성능을 나 타내었다.
        4,300원
        83.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        상업적으로 이용되는 폴리스티렌계 이온교환막은 제조 공정이 쉽고 간단하지만 막이 가지는 취성 때문에 내구성이 약하다는 단점을 가지고 있다. 이를 보완하기 위하여 친수성 그룹인 poly(ethylene glycol)을 곁사슬로 가지고 있는 poly(ethylene glycol)methyl ether methacrylate를 공중합시켜 음이온 교환막을 합성하였다. 지지체로는 내화학성 및 기계적 강도가 우수한 다 공성 PE 지지체를 사용하였고, 여기에 다양한 조성의 vinylbenzyl chloride, styrene, poly(ethylene glycol)methyl ether methacrylate, divinylbenzene, benzoyl peroxide를 녹인 단량체 용액을 지지체 기공에 채운 뒤 열중합 가교시켜 trimethylamine을 이 용하여 음이온 교환기를 도입해 세공충전 음이온 교환막을 합성하였다. 또한 poly(ethylene glycol)methyl ether methacrylate의 곁사슬 길이와 각 단량체가 차지하는 비율의 변화가 음이온 교환막의 전기화학적 특성에 미치는 영향을 알아보았다.
        4,000원
        84.
        2015.11 구독 인증기관·개인회원 무료
        Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as alternatives to perfluorinated sulfonic acid ionomers used as polymer electrolyte membranes for fuel cells. SPAES copolymers are suffering from degradation under harsh fuel cell operation conditions. One solution to overcome the decomposition issue is to fill SPAES copolymers into polymeric support films (e.g., poly(tetrafluoro ethylene), PTFE) with interconnected porous structures. It is difficult to fill the SPAES copolymers dissolved in polar aprotic solvents into PTFE support films owing to their different surface energies. In this study, a SPAES nanodispersion in a water-alcohol mixture is used to make defect-free pore-filling membranes where poly(ethylene glycol) oligomers are added to induce advanced morphologies for fast proton conduction.
        85.
        2015.11 구독 인증기관·개인회원 무료
        막 접초기용 최적의 중공사막을 탐색하기 위하여 기공구조 및 기공도를 제어하여 중공사막을 상전이법으로 제조하였다. 상전이법으로 제조한 중공사막의 기공구조는 도프용액의 용매와 내외부응고제의 상호작용에 의해 결정되며, 용매와 응고제를 달리하여 제조한 중공사막의 특성을 비교하였다. SEM 이미지를 통해 기공구조를 확인하였으며, 기체투과도 측정실험을 통해 기공도 및 기공크기를 계산하였다. 막 젖음 현상을 방지하기 위해 금속산화물의 친수성표면을 소수성으로 개질하였으며, 최소침투압력을 측정하여 기공도 및 기공구조에 따른 소수성 특성을 비교하였다. 또한 실제 이산화탄소 흡수 실험을 통해 기공도와 기공크기가 흡수특성에 미치는 영향을 분석하고 최적화된 중공사막을 탐색하였다.
        86.
        2015.11 구독 인증기관·개인회원 무료
        A simple method for generating pores in a cellulose acetate (CA) polymer matrix was developed using a combination of an ionic liquid and water pressure treatment. A porous CA membrane was successfully prepared using the ionic liquid (BMIM-BF4) and subsequent water pressure treatment. Pores were generated in the CA polymer matrix when the CA/ionic liquid composite was subjected to water pressure. The characteristics of the thus-generated porous membrane were evaluated using porosimetry. FT-IR and Thermogravimetric analysis (TGA) showed that when the CA polymer was subjected to water pressure, most of the BMIM-BF4 incorporated in the polymer during its preparation was removed, thereby generating the observed pores. In addition, it was observed that the flux varied with water pressure, indicating that the pore size was controllable.
        87.
        2015.11 구독 인증기관·개인회원 무료
        본 연구에서는 평균입경 0.2, 0.5, 1,7㎛ 크기의 α-알루미나 분말을 이용하여 다공성 α-알루미나 지지체의 기공구조를 조절하고자 하였다. 다공성 α-알루미나 지지체는 슬립캐스팅공법을 이용하여 제조한 후 소결하였으며, 이 때 소결 온도가 지지체의 기공특성에 미치는 영향에 대하여 고찰하였다. 제조된 다공성 α-알루미나 지지체는 수은기공분석기를 이용하여 기공크기 및 기공률 등을 분석하였으며, 단일기체투과장치를 이용하여 기체 투과도를 측정하였다. 그 결과 평균입경 0.2, 0.5, 1.7㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체는 각각 80, 130, 200㎚의 기공경을 가졌으며, CO2 단일기체에 대해 각각 1300, 1700, 5000GPU를 나타냈다.
        88.
        2015.11 구독 인증기관·개인회원 무료
        Reverse electrodialysis (RED) is one of the promising processes for generating electricity from the salt concentration gradient between river and sea water. A RED stack contains alternately arranged anion and cation exchange membranes which separate salt solutions of different concentrations. The power generation performance of RED significantly depends on the characteristics of ion exchange membranes. In this work, we have prepared high performance pore-filled anion-exchange membranes. In addition, the optimization of membrane design parameters has been investigated using the membranes via various electrochemical analyses in terms of the enhancement of RED performances. Finally, the membrane surface has been modified with acid-doped polypyrrole for the improvement of the membrane properties. (No. 10047796) (No. 2015H1C1A1034436)
        89.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure ofporous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compo-sitions are frozen into a mold at -25oC. Pores are generated by sublimation of the vehicles at room temperature. Afterhydrogen reduction at 300oC and sintering at 850oC for 1 h, the green body of CuO-NiO is completely converted toporous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to thesublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to thedegree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphologyare observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plateshape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals dur-ing solidification of camphor-naphthalene alloys.
        4,000원
        90.
        2015.05 구독 인증기관·개인회원 무료
        Perfluorinated sulfonic acid ionomers have been used as representative membrane materials in a wide range of applications. Though PFSA ionomers have been well known as chemically durable materials, their chemical resistances should be improved further to apply them to practical fuel cell systems operated under harsh conditions. One plausible solution would be to fabricate reinforced membranes composed of proton-conducting ionomers and chemically durable porous support films. In this study, pore-filling membranes are prepared via the impregnation of PFSA ionomers into porous PTFE support films. The objective of this study is to systematically investigate the influences of pore characteristics on proton transport behavior and electrochemical single performances.
        91.
        2015.05 구독 인증기관·개인회원 무료
        본 연구에서는 평균입경 0.2, 0.5㎛ 크기의 α-알루미나 분말을 이용하여 다공성 α-알루미나 지지체의 기공구조를 조절하고자 하였다. 다공성 α-알루미나 지지체는 슬립캐스팅공법을 이용하여 제조한 후 소결하였으며, 이 때 소결 온도가 지지체의 수축률 및 소결거동 등에 미치는 영향에 대하여 고찰하였다. 제조된 다공성 α-알루미나 지지체는 수은기공분석기를 이용하여 기공크기 및 기공률 등을 분석하였으며, 단일기체투과장치를 이용하여 기체 투과도를 측정하였다. 그 결과 평균입경 0.5㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체의 경우, 평균 입경 0.2㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체에 비하여 기공크기가 크고 기공률이 높았으며, 기체투과도가 높을 것을 알 수 있었다.
        92.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metallic porous materials have many interesting combinations of physical and geometrical properties with very low specific weight or high gas permeability. In this study, highly porous Cu foam is successfully fabricated by a slurry coating process. The Cu foam is fabricated specifically by changing the coating amount and the type of polyurethane foam used as a template. The processing parameters and pore characteristics are observed to identify the key parameters of the slurry coating process and the optimized morphological properties of the Cu foam. The pore characteristics of Cu foam are investigated by scanning electron micrographs and micro-CT analyzer, and air permeability of the Cu foam is measured by capillary flow porometer. We confirmed that the characteristics of Cu foam can be easily controlled in the slurry coating process by changing the microstructure, porosity, pore size, strut thickness, and the cell size. It can be considered that the fabricated Cu foams show tremendous promise for industrial application.
        4,000원
        93.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        과불소계 술폰화 이오노머(perfluorinated sulfonic acid ionomers; PFSAs)는 뛰어난 수소이온전도성과 높은 내화학성으로 인해 고분자 전해질 연료전지(polymer electrolyte fuel cells)용 고체전해질로 널리 사용되고 있다. 그러나 PFSA 전해질은 가습-건조조건에서 연료전지가 구동에 따라 반복적인 팽윤-수축으로 인해 전극층이 전해질로부터 탈리되어 전기화학적 수명특성이 감소되는 문제점을 가지고 있다. 본 연구에서는 다공성 PTFE support film의 기공특성에 대한 이해를 바탕으 로 기공구조 내 나피온 이오노머를 함침시키는 강화막을 제조하였고, 기본특성을 평가하였다. 제조된 강화막은 매우 높은 수 소이온전도도(~0.5 S cm-1@90°C in liquid water)를 나타내었다.
        4,000원
        94.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and WO3 powder compacts. The PMMA sizes of 8 and 50 μm were used as pore forming agent for fabricating the porous W. The WO3 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1200oC in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about 400oC and WO3 was reduced to metallic W at 800oC. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.
        4,000원
        95.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ceramics biomaterials are useful as implant materials in orthopedic surgery. In this study, porous HA(hydroxyapatite)/β-TCP(tricalcium phosphate) composite biomaterials were successfully fabricated using HA/β-TCP powders with 10-30 wt% NH4HCO3 as a space holder(SH) and TiH2 as a foaming agent, and MgO powder as a binder. The HA/β-TCP powders were consolidated by spark plasma sintering(SPS) process at 1000 oC under 20 MPa conditions. The effect of SH content on the pore size and distribution of the HA/β-TCP composite was observed by scanning electron microscopy(SEM) and a microfocus X-ray computer tomography system(SMX-225CT). These microstructure observations revealed that the volume fraction of the pores increased with increasing SH content. The pore size of the HA/β-TCP composites is about 400-500 μm. The relative density of the porous HA/β-TCP composite increased with decreasing SH content. The porous HA/β-TCP composite fabricated with 30%SH exhibited an elastic modulus similar to that of cortical bone; however, the compression strength of this composite is higher than that of cortical bone.
        4,000원
        96.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, an image analysis method is used to evaluate the pore structure characteristics and permeability of hybrid concrete. METHODS: The binder weight of hybrid concrete is set to 400 kg/m3, 370kg/m3, and 350 kg/m3, and for each value of binder weight, the pore structure and permeability of concrete mixture is evaluated. The permeability of hybrid concrete is evaluated using a rapid chloride penetration test(RCPT). RESULTS : The concrete pore structure characteristics of hybrid concrete reveals that as the binder weight is reduced, the entrained air is reduced and the entrapped air is increased. The permeability of the hybrid concrete for all values was measured to be below 1000 C, which indicates a "Very Low" level of permeability relative to the evaluation standard of KS F 2711. Additionally, as the binder weight is decreased, there is a significant increase in the permeability of chloride ions. CONCLUSIONS : In this study, the pore structure characteristics of hybrid concrete at different binder weights shows that as the binder weight is reduced, the entrained air is reduced and the entrapped air is increased. Consequently, chloride ion penetration resistance of the hybrid concrete is diminished. As a result, it is expected that this will reduce the concrete’s durability.
        4,000원
        97.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High crystallinity coke-based activated carbon (hc-AC) is prepared using a potassium hydroxide solution to adsorb carbon dioxide (CO2). The CO2 adsorption characteristics of the prepared hc-AC are investigated at different temperatures. The X-ray diffraction patterns indicate that pitch-based cokes prepared under high temperature and pressure have a high crystal structure. The textural properties of hc-AC indicate that it consists mainly of slit-like pores. Compared to other textural forms of AC that have higher pore volumes, this slit-poreshaped hc-AC exhibits higher CO2 adsorption due to the similar shape between its pores and CO2 molecules. Additionally, in these high-crystallinity cokes, the main factor affecting CO2 adsorption at lower temperature is the pore structure, whereas the presence of oxygen functional groups on the surface has a greater impact on CO2 adsorption at higher temperature.
        4,000원
        99.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuOlimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at -25℃<, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at 500℃ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.
        4,000원
        100.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction ofpores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filtersand as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was suc-cessfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and Fe2O3 powdermixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was preparedby uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyure-thane(PU) foam, the sample was dried at 80℃. The PVA and PU foams were then removed by heating at 700℃ for 3hours. The debinded samples were subsequently sintered at 1250℃ with a holding time of 3 hours under hydrogenatmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigatedusing X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount ofslurry on the PU foam were increased with Fe2O3 mixing powder ratio but the shrinkage and porosity of Fe foams weredecreased with Fe2O3 mixing powder ratio.
        4,000원
        1 2 3 4 5