우리나라는 대규모 유류오염사고가 발생한 경우 방제자원이 충분하지 않아 방제에 어려움을 겪었으며, 또한 방제에 동원된 어선이 효과적인 방제를 수행하지 못해 작업비용이 거부되는 사례도 이전 사고에서 경험하였다. 이에 대규모 유류오염사고 등을 대비하여 방제자원을 사전에 확보하고 또한 유류오염으로 인하여 많은 피해를 입게 되는 오염지역의 어선을 효율적으로 활용할 수 있는 방안의 일환으로 소형 선박에 장착하여 기름을 회수할 수 있는 효율적 장비를 개발하고 이를 정책화하는 것이 중요한 대안이 될 수 있다. 이를 위해, 본 연구에서 국내 실정에 맞는 소형선박 장착용 기름회수장비 개발을 위한 예비 단계로서 이러한 장비의 장착에 적합한 대상 선박의 선정을 위한 연구를 수행하였다.
Marine caused pollution occurs mostly near coastal area and its main cause was known to be human feces issued from small vessels. To sterilize liquid pollutants from portable toilets of small vessels, an electrolysis treatment is judged to be the most economic and stable method considering an environment of its use. In this paper, we presents an electrolysis apparatus which is the most appropriate for sterilizing pollutants from portable toilets of small vessels and derives the minimum operating time of the apparatus for sterilizing norovirus which is a main target of marine caused pollution sources. In order to utilize renewable energy, we designed an apparatus which generates a renewable energy from solar cells. As a result, we could confirm the applicability of the proposed system with the results from experiments in three cases of different weather conditions.
오토파일럿은 선박의 운항예정 코스를 설정하여 입력시킨 후, 자동운항 모드로 세트하면 선박이 운항코스의 경로를 따라 자동으로 항행하는 시스템이다. 중소형 고속선박에 주로 사용되고 있는 워터젯시스템은 엔진과 연결된 임펠러(회전익)를 구동하여 선저에 선수방향으로 설치된 흡입구를 통하여 해수를 흡입하여 압력을 높인 후, 노즐을 통하여 가속된 해수를 선저의 선미방향으로 분사시키므로써 선체를 조향하고 추진시키는 장치이다. 그러므로 워터젯시스템은 수심이 낮은 해역에서도 운항이 가능하며, 고효율 의 고속추진, 상대적으로 낮은 진동과 유동소음 등의 환경에서 매우 효과적이므로 새로운 추진시스템으로 레저보트용 등 그 수요가 확대되고 있다. 그러나 워터젯시스템의 전기적인 제어신호는 표준화되어있지 않으므로 디지털 오토파일럿의 표준화된 인터페이스를 제공하지 않는다. 본 논문은 표준화된 오토파일럿과 워터젯시스템 사이에서 연동하므로써 중소형 고속선박을 신뢰성 있게 조향할 수 있는 피드백 제어 인터페이스 모듈을 설계하였다.
본 논문에서는 선박 내 무선통신을 위한 무선랜용 미엔더 라인 안테나를 개발할 것이며, IEEE 802.11a에서 제정한 WLAN 대역인 2.4 ∼ 2.46 GHz와 5.15 ∼ 5.35 GHz 대역을 만족할 수 있는 안테나를 설계한다. 안테나는 32⨉16㎟의 기판에 설계되었으며, 설계한 안테나의 특징은 무선랜 공진주파수 대역에서의 정합을 만족한다. 직사각형 패치의 길이를 조정함으로써 두 개의 공진 주파수를 얻을 수 있었으며, 얻어 진 임피던스 대역은 2.4GHz에서 12%, 5GHZ에서 45.3%의 특성을 보였다. 또한 공진주파수 대역에서 비교적 양호한 방사패턴과 안테나 이득을 얻을 수 있었다.
최근 들어 선박직원법상 승무기준의 개정의 필요성에 대한 강력한 주장이 수산업계에서 제기되었다. 수산업계에서는 승무기준완화 입장을 유지하는 반면 노동계와 해기사협회 및 통신사협회는 현행유지 내지 기준의 강화를 주장하였다. 본 연구는 선박안전운항을 확보하기 위하여 선박직원법상 소형선박조종사 승무기준의 타당성과 그 개선 방안을 연구 제시하고자 한다.
FRP 소형 선박의 선내소음의 원인을 규명하고 이들에 대한 합리적인 허용기준 설정 및 저소음화 설계를 위해 FRP 4~11톤급 신조 소형 선박을 대상으로 시운전시에 선내소음을 측정하여 소형 선박의 선내 소음특성 및 소음과 진동과의 상관관계를 검토, 분석하고, 이들에 대해 IMO와 DNV의 허용기준상의 적합도를 비교한 결과를 요약하면 다음과 같다. 소형 선박의 선내 소음 최대 레벨 범위는 79~115dB(A)로 나타났다. 또한, IMO 및 DNV 규제치와 비교에서 주기관실 소음은 비슷하게 나타났으며, 상부, 하부 거주실의 소음은 각각 5~19dB(A), 18~22dB(A) 높고, 조타실의 소음은 14dB(A) 높았으며, 동형선 E와 G선의 소음비교에서 선박의 크기, 마력이 비슷함에도 불구하고 E선 주기관이 G선의 주기관보다 진동 및 소음이 제작당시부터 높은 것으로 판단되었다. 한편 소음원 규명을 위한 진동과의 상관관계에서 주기관실, 상부 거주실, 하부 거주실, 조타실, 연통상부 모두 3차수가 우세하게 나타났으며, 3차수가 각 선내소음을 일으키는 주원인으로 판단된다.
해난사고의 발생으로 표류중인 조난선박을 구조하는데 있어서 가장 중요한 작업은 조난선박의 현재 표류위치를 정확하게 추정하는 것이다. 표류지점을 예측하는데 현재 사용되고 있는 방법들은 기본적으로 해류와 바람의 영향을 벡터적으로 합성하여 수색범위를 결정한다. 여기서 해류보다 바람의 영향에 의한 표류(leeway)를 예측하기가 어려운데 leeway는 주로 실물을 이용한 현장실험을 통하여 결정한다. 본 연구에서는 우리나라의 연안용 소형선박을 대상으로 제주 북방해역에서 실제 표류실험을 하였는데, leeway 산출에는 지금까지의 기법과는 달리 표류선박에서 측정된 상대유속과 유향 그리고 상대풍속과 풍향을 사용하였다. 실험자료로부터 산출된 leeway는 풍속의 약3% 부근이며 leeway angle은 자료중 80%가 -65˚에서 -15˚사이였다.
본 연구는 유선, 어선 등이 관제대상으로 확대됨에 따라 해당 선박이 VTS(Vessel Traffic Service) 관제사에게 미치는 충돌사고 위험도를 분석하는 데 목적이 있다. 이를 위해 VTS 관제사를 대상으로 설문을 하고 소형선박의 범위를 정하여 부산 VTS 관제 구역을 항해하는 일반상선과 소형선박의 침로 등을 3일간 조사하였다. 이를 VTS 관제사 관점에서의 충돌위험 평가모델(CoRI)로 위험도를 구한 결과, 침로 편차에 따른 위험도의 증가․감소 패턴은 비슷하였고, 최댓값과 최솟값은 큰 차이가 없었다. 또한 대부분 VTS 관제사는 선박근접상황에 대해 안전하게 관제할 수 있는 최소 시간으로 3분이 필요하다 응답하였는데, 소형선박의 충돌위험도는 3분의 시간 동안 매우 급격하게 위험도 변화를 보 여 VTS 관제사의 업무량 증가와 집중도 저하 우려가 있다고 판단된다. 본 연구는 소형선박의 관제대상 포함 여부가 VTS 관제사에게 미치는 영향을 충돌위험도로 검토한 것으로, 향후 다양한 사례를 통한 CoRI 모델의 각 지수에 대한 분석과 검증을 통해 관제 대상 선박의 적절한 범위 설정을 위한 방안 마련에 기여할 수 있을 것으로 기대된다.
국제해사기구의 해양환경안전위원회에 의해 도입된 에너지효율설계지수는 이산화탄소 배출량 규제를 위해 필요하나, 선박의 감속 운항과 주기관 출력 저하로 황천항해 시 사고로 이어질 수 있다. 이에 해양환경안전위원회는 황천항해 시 선박의 침로유지를 위한 주기관 최소출력에 대한 지침을 제시하였으나, 이는 재화중량톤수 20,000톤 이상 선박에 대한 것으로 중소형 선박에 대한 기준은 부재하다. 본 연구는 최소출력에 대한 지침을 근거로 지침 적용대상인 선박을 평가하고, 수정된 지침을 제안하였다. 또한 지침 미적용 대상인 재화중량톤수 20,000톤 미만의 중소형 선박들에 대한 주기관 최소출력 제시를 목적으로 관련 해양사고 사례들을 조사하고, 선박의 크기에 따른 주기관 출력을 분석하여 중소형 선박에 적용될 수 있는 주기관 최소출력 기준을 제시하였다. 연구의 결과는 악천후 시 중소형 선박들의 해양사고 감소를 위해 선박 건조에 고려될 수 있는 최소출력 기준으로 이용될 수 있을 것이다.
본 논문에서는 소형 선박용 관성측정장치(Inertial Measurement Unit, IMU) 개발에 적합한 MEMS(Micro-Electro Mechanical System) 기반의 관성 센서 평가와 선정에 관하여 기술했다. 먼저, 오일러 공식에 기초한 관성 센서의 오차 모델과 잡음 모델을 정의하고, 앨런 분산(Allan Variance) 기법과 몬테카르로(Monte Carlo) 시뮬레이션 기법을 도입하여 관성 센서를 평가하였다. ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH, ADXL103 등 다섯 가지 관성 센서에 대한 평가결과, ADIS16405의 자이로와 가속도계를 조합한 경우 오차가 가장 작게 나타났는데, 600 초 경과시 속도 오차의 표준편차가 약 160 m/s, 위치 오차의 표준편차가 약 35 km로 나타났다. 평가를 통해 ADIS16405 관성 센서가 IMU 구축에 최적임을 알았고, 이러한 오차 감소 방법에 대해서 참고문헌을 조사하여 검토하였다.
최근 항공기, 자동차, 선박을 포함하여 다양한 분야에서 무인시스템에 관한 연구 개발이 이루어지고 있다. 우리나라에서도 IT 기술의 발달과 함께 무인시스템에 관한 연구가 활발히 진행되고 있지만 아직 개발 실적은 미미한 수준이다. 이 연구에서는 바지(barge)선형의 초소형자율 무인선박(USV)을 개발하고자 하였다. 자율항법 알고리즘 개발에 GPS센서의 위치 정보를 기반으로 대권항법 계산식을 적용하였으며, 프로그래밍은 NI사의 LabVIEW 8.2를 이용하였다. 조타제어는 펄스진폭변조 방식으로 하였다. 또한, 엔진시스템은 전동모터 및 전자 변속기로 구성하였고, 엔진시스템 냉각방식으로 DC모터펌프를 이용한 해수 직접냉각방식을 채용하였다. 무인선박을 자체 설계 제작하고, 해상실험을 통해 자율운항 알고리즘의 유효성을 검증하였다.
연안 경비함정의 선상근무 환경은 육상근무 환경에 비하여 매우 열악하여 선상근무 기피와 성원고령화의 원인이 되고 있다. 특히 선박내 소음은 난청과 같은 직업병을 유발시키는 원인이 된다. 따라서 안락한 선상근무 환경 및 거주 환경의 확보를 통하여 선상근무 피로도를 경감시키는 것이 필요하다. 본 연구에서는 먼저 선박내 소음 및 진동의 실선 계측을 통하여 선상근무 환경을 체계적으로 평가한다. 그리고 선상근무 환경의 평가 결과에 기초하여 선상근무 피로도 경감대책을 제안한다
연안 경비함정의 선상근무 환경은 육상근무 환경에 비하여 매우 열악하여 선상근무 기피와 선원 고령화의 원인이 되고 있다. 특히 선박내 공기오염과 전자파는 직업병을 유발시키는 원인이 된다. 따라서 안락한 선상근무 환경 및 거주 환경의 확보를 통하여 선상근무 피로도를 경감시키는 것이 필요하다. 본 연구에서는 먼저 선박내의 공기오염과 전자파의 실선 계측을 통하여 선상근무 환경을 체계적으로 평가한다. 그리고 선상근무 환경의 평가 결과에 기초하여 선상근무 피로도 경감대책을 제안한다.
표류지점 추정 모델의 환경 입력자료를 확보하기 위해 부산항 연근해에서 표류실험을 실시하였다. 실험에는 크기가 다른 4척의 선박(10, 20, 50, 90톤급)이 사용되었다. 그중 50톤급 선박에는 해류, 바람, 위치를 자동적으로 기록하는 계기들을 장착하였고, 나머지 선박들에서는 분산각 추정 연구를 위해 위치자료만 기록하였다. 각 선박들의 위치는 DGPS와 자동위치발신기(APRS)를 사용하여 기록하였다. 실험은 풍속 2~10m/s, 유속 0.5~1.5m/s의 환경에서 행하여졌으며, leeway는 선박 표류속도에서 표층의 유속성분을 제거하여 구하였다. 50톤급 선박의 leeway rate는 풍속의 약 3.6%인 것으로 분석되었으며, leeway 방정식은 UL =0.042W -0.034로 표현되었고 leeway angle은 -30˚~40˚의 범위였다.