검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 247

        106.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        목초액을 친환경 인삼재배에 이용하기 위하여 전엽기 이후인 6월 중순부터 지상부에 엽면시비로 살포하여 3년생 인삼 잎의 형태적특성과 수량에 미치는 영향을 조사하였다. 목초액을 처리하면 처리농도에 관계없이 해면조직의 배열이 3층에서 4층으로 증가하였다. 또한 인삼 잎의 상표피와 하표피의 두께가 두꺼워지고, 엽육세포도 두꺼워지는 효과를 보였으며 지하부의 생육에도 영향을 미쳐 무처리에 비해 뿌리의 생육이 증진되었으며 인삼 뿌리의 수량도 증가하였다. 따라서 목초액의 혼합사용은 인삼의 생육을 촉진시키고, 병해를 극복하여 인삼을 친환경재배 할 수 있는 대안이 될 것이다.
        107.
        2014.02 KCI 등재 서비스 종료(열람 제한)
        To study the cause of physiological disorder in leaf of ginseng cultivated at paddy soil, the degree of brown-colored symptom (BCS) and the contents of inorganic matter in leaf were investigated by irrigating the solution of ferric andferrous iron of 0.1~2.0%, and citric acid of 1.0~4.0% on bed soil, respectively. Ratio of BCS by variety was as high as85.0% in Yoenpoong, while it was as low as 5.4%, 7.5% in Chunpoong and Hwangsook, respectively. The contents ofinorganic matter of leaf in Yoenpoong were lower in P₂O5, Ca, and Mg, while it were higher in K, Fe, and Mn than othervariety. Iron solution caused BCS more distinctly when each ferric and ferrous iron were dissolved with 1.0% citric acidthan when each iron was dissolved without citric acid. Ferric iron caused BCS more effectively than ferrous iron. BCSoccurred in 4.0% citric acid was as same as 2.0% ferric iron mixed with 1.0% citric acid. Low P₂O5 and high Fe content inleaf appeared in both of artificial and natural symptoms. We concluded that excessive Fe uptake caused BCS to leaf becausethe solubility of iron was increased in condition of low soil pH.
        108.
        2014.02 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate change of ginsenoside contents in red and fresh ginseng according toroot part and age by hydrolysis. Neutral total ginsenoside contents by hydrolysis in 6-year main root and lateralroot were significantly increased than those by non-hydrolysis, as 41.6 and 32.8%, respectively. However, there wasno significant difference in red ginseng. In fresh ginseng, ginsenoside contents of the protopanaxatriol group such as Re, Rf,Rg₁, Rg₂, and Rh₁ were not significantly different, but Rb₁, Rb₂, Rb₃, Rc, and Rd showed significant difference. The increaserate of neutral total ginsenoside content by hydrolysis was higher in epidermis-cortex than stele. Also, the neutraltotal ginsenoside content was fine root>rhizome>lateral root>main root, respectively. While there was no tendencytowards the increase of ginsenoside by hydrolysis with the increase of root age in fine root and rhizome, there was significantdecrease in main root and lateral root.
        109.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate change of ginsenoside contents according to tissue ratio in ginseng root by age and diameter. The epidermis-cortex and xylem-pith extent, fresh weight, dry weight of ginseng increased with the root age increase. They increased higher in xylem-pith than in epidermis-cortex. The ratio of epidermis-cortex decreased and xylem-pith increased as the main root diameter increased. In case of same diameter, the xylem-pith ratio increased by the increase of root age. The epidermis-cortex ratio was 4 > 5 > 6 years, respectively. The total 10 ginsenosides of epidermis- cortex increased with the root age increase. However, the total ginsenoside of xylem-pith decreased and it was 2~5 times lower than epidermis-cortex. The most of ginsenoside contents existed in epidermis-cortex. The diameter decrease in main root is related to the increase of epidermis-cortex ratio. It leads to increase of ginsenoside contents. In order to select high level of ginsenoside cultivar, it suggested that it should be selected main root having narrow diameter and lower epidermis- cortex ratio.