검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 742

        135.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Concrete pavement is excellent in structural performance and durability. However, its functionality – such as noise and skid resistance – is a shortcoming. Functionality such as noise reduction and skid resistance of concrete pavement is affected by the texture surface, and the texture surface is classified according to the length of the wavelength. In recent years, Fine-size exposed aggregate concrete pavement has been applied, which has excellent structural performance and durability, and secures functionalities such as noise reduction and long-term skid resistance by randomly forming texture surface. Fine-size exposed aggregate concrete pavements are constructed by removing the surface cement binder to randomly expose coarse aggregate and their functionality is mainly governed by the surface texture. However, deteriorated concrete by tire-pavement friction and deicing agent may cause abrasion and aggregate loss on the surface texture; thus reducing their functional performances. Abrasion is created by the thin cutoff of aggregate texture under repeated tire-pavement friction. In addition, aggregate loss is defined by the detachment of aggregates from cement binder. This study aims to evaluate the abrasion and aggregate loss of Fine-size exposed aggregate concrete pavement surface texture under tire-pavement friction and scaling tests. METHODS : In the study, abrasion and aggregate loss of tining and exposed aggregate concrete surface treatments were evaluated. Deterioration of each surface treatment was replicated by scaling test under ASTM C 672 test method. Afterward, abrasion test was conducted by ASTM C779 to simulate the tire-pavement friction under traffic. Consequently, abrasion and aggregate loss were measured. RESULTS : Abrasion depth of non-scaling tining, 10-mm EACP, and 8-mm EACP was 1.76, 1.12, and 1.01mm, respectively. Compared to scaling surface treatments, the difference of abrasion depth in tining texture was the largest with value of 0.4mm. For both textures of finesize exposed aggregate concrete, abrasion depth difference was about 0.1mm. Moreover, The 10-mm EACP exhibited a 2.6% of aggregate loss rate caused by tire-pavement friction before conducting concrete deterioration test. After 40-cycle scaling test, aggregate loss increased up to 12.2%. For 8-mm EACP, aggregate loss rate was 1.7% on non-scaling concrete. Further, this rate was magnified up to 7.3% for the 40-cycle scaling concrete. CONCLUSIONS : Under non-scaling or scaling tests, fine-size exposed aggregate concrete pavement showed better abrasion resistance than tining texture since tining was formed by aggregates and cement binder. Additionally, rate of aggregate loss was significant when EACP experienced the deicing agent under numerous cycles of freeze-thaw action.
        4,000원
        136.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Pavement growth (PG) of concrete pavement has been recognized as a major concern to highway and airport engineers as well as to road users for many years. PG is caused by the pressure generation in the concrete pavement as a result of a rise of the concrete temperature and moisture. PG could result in concrete pavement blowup and damage the adjacent or the nearby structures such as bridge structures. The amount of the PG is affected by the complicated interactions of numerous factors such as climatic condition, amounts of incompressible particles (IP) infiltration into the joints, pavement structure, and materials. Trigger temperature for pavement growth (TTPG) is defined as the concrete temperature when all transverse cracks or joints within the expansion joints completely close and generating a pressure in the pavement section. It is one of the most critical parameters to evaluate the potential of PG occurring in the pavement. Unfortunately, there are no available methods or guidelines for estimating TTPG. Therefore, this study aims to provide a methodology to predict TTPG of a concrete pavement section. METHODS : In this study, a method to evaluate the TTPG and its influencing factors using the field measured data of concrete pavement expansions is proposed. The data of the concrete pavement expansions obtained from the long-term monitoring of three concrete pavement sections, which are I-70, I-70N, and Md.458, in Maryland of United Stated, were used. The AASHTO equation to estimate the joint movement in concrete pavement was used and modified for the back-calculation of the TTPG value. A series of the analytical and numerical solutions presented in the literatures were utilized to predict the friction coefficient between the concrete slab-base and to estimate the maximum concrete temperature of these three pavement sections. RESULTS : The estimated maximum concrete temperature of these three pavement sections yearly exhibited relatively constant values, which range from 40 to 45 °C. The results of the back-calculation revealed that the TTPG of the I-70 and Md.58 sections decreased with time. However, the TTPG of the I-70N section tended to be relatively constant from the first year of the pavement age. CONCLUSIONS : The estimation of the TTPG for the three concrete pavement sections showed that the values of the TTPG gradually decreased although the yearly maximum concrete pavement temperature did not change significantly.
        4,000원
        139.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        교면 포장은 교통하중 및 온도 변화 등의 환경적 요인에 따라 상판, 거더, 신축/압축 이음 등의 교량 상부 구조물의 복잡한 거동을 나타나기 때문에 도로포장의 구조 성능과는 다르다. 이에 본 논문에서는 가변형 팬믹서를 활용하여 개질유황 합성 시멘트 콘크리트(MSCC)를 혼합하는 새로운 방법을 제시하고자 한다. 혼합 단계는 건식 및 습식의 두 단계로 이루어지며, 회전 모터의 속도의 변화를 주어 혼합하는 방식이다. 제안된 방법의 타당성을 평가하기 위해 실내 실험을 실시하였으며, 본 기술 적용 시 MSCC의 내구성이 향상되고 교량 포장 설계 요건을 충족하는 것을 확인하였다. 또한 내구성 및 경제성을 고려하여 최적 MSCC 개질유황 함량을 4%로 제안하고자 한다. 현재 제안된 기술의 적용 가능성을 확인하기 위한 추가적인 현장 평가가 수행되고 있으며, 가까운 시일 내에 결과를 제시할 예정이다.
        4,000원
        140.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The noise problem in concrete pavements has an adverse effect to the road user or nearby residents and is generated by the contact between a tire and the pavement surface. Exposed aggregate concrete pavements have been adopted to solve the tire-pavement noise problem in the United States and Europe. However, the efficiency of the coagulation retarder and exposure equipment used for this kind of pavement has not yet been investigated. Therefore, this study aims to evaluate the ability of the coagulation retarder and exposure equipment in producing the optimum exposed aggregate texture to achieve low pavement noise. A method for the exposure time selection has also been introduced here. METHODS: Sodium gluconate retarders were selected for use in this study. The retarder-water ratios of 1:1, 1:2, and 1:3 were investigated. The retarder was sprayed on a fresh concrete surface with rates of 200 g/m2, 300 g/m2, and 400 g/m2. The aggregates were then exposed to the surface using a steel brush and a water jet. The efficiencies for the low-noise texture, workability, and environmental impact produced by the two exposure devices were estimated. The EAN and the MTD were investigated according to the exposure time. RESULTS : The aggregates were exposed after the retarder was sprayed on the fresh concrete surface; the exposure lasted for 18 h to 26 h each time. The retarder-water ratio of 1:2 and the spraying rate of 300 g/m2 produced an optimum surface texture for low noise. Additionally, the steel brush performed more effectively in exposing aggregate to the surface compared to the water jet. The selected exposure time window (ETW) was 28 h to 35 h. CONCLUSIONS : The optimum retarder was the sodium gluconate retarder with a retarder-water ratio of 1:2 and a spraying rate of 300 g/m2. The steel brush showed a good performance in exposing the aggregates and showing the efficiency of the coagulation retarder in the given environment so as to produce the quality control condition. The ETW was influenced by the construction, mixture design, and construction environment; however, the selected ETW in this study was 26 h~35 h.
        4,000원