검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,430

        121.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium-ion battery (LiB) is one of the special issues on nowadays and diverse researches to develop LiB with better performances have been carried out so far, especially, regarding improved properties of each component such as cathode, anode, separator and electrolyte. However, there are limited information on ‘processing’ to prepare each component, and especially fabrication of cathode is strongly dependent on thinky mixer to realize homogeneous dispersion of active materials and conductors in binders. Herein, we report on preparation of LiNi0.8Co0.1Mn0.1O2 (NCM811) based cathode materials with different carbon conductors (CNT and carbon black) using homogenizer and three-roll milling method. These processes are turned out perfect alternative to prepare cathode electrode. LiB cells were assembled using the dispersed electrode slurry and the performance of a cell was electrochemically stable, even in the case of a CNT conductor, which is normally difficult to make perfect dispersion because of its strong Van der Waals attraction between the tubes and π–π interactions.
        4,000원
        122.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotubes (CNTs) were added into the self-healing polyurethane materials as conductive filler, the mass fraction of carbon nanotubes was adjusted, and 1% polyaniline was doped. The conductive self-healing polyurethane composites with different carbon nanotubes content (PU)-1/3/5/8/10 were prepared, and analyzed and tested. The result shows that the permeability threshold value of the composite material is 8wt%, and the comprehensive performance of the composite material PU-8 is the best; the resistance of PU-8 is 1278Ω, PU-8P has a resistance of 1400Ω; using an infrared camera, it can be seen that the material can reach 143.3 °C under the DC current of 0.1A, reaching the temperature condition when the material is repaired; the swelling test shows that the PU-8P equilibrium swelling rate is 177%, the gel content is 52.67%, and there is no dissolution in dimethyl sulfoxide. Solvent stability is better than PU-8;DSC test shows that the glass transition temperature of the soft segment of PU-8P is 43 °C, and the glass transition temperature of the hard segment is − 55 °C, which is not much different from that of PU-8; TG test shows that the epitaxial starting temperature of PU-8P is 365 °C; the observation photo is magnified by a stereo microscope at ten times and the PU-8P sample is cut of in the middle at room temperature, applying a constant voltage of 30 V, the cracks disappeared. The material cracks realized self-healing with electricity, and the repair efficiency reached 20.5%.
        4,300원
        123.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The current study was intended to synthesize and characterize the physical, chemical, and mechanical properties of carbon/ carbon (C/C) composites using the chemical vapor infiltration (CVI) process. To that end, carbon fiber felt (CF) was used as a preform, and methane and hydrogen were employed as reactive and carrier gases, respectively. After deciding on the optimum temperature (1050 °C), the composite samples were produced at different times (0–195 h). Then the samples were studied for their phase and microstructure characteristics using XRD, SEM, FESEM, FTIR, and Raman spectroscope. The results showed that by increasing the CVI process time up to 195 h, the density of the produced samples increased from 0.20 to 1.62 g/cm3, and the specific surface area decreased from 58.78 to 0.23 m2/ g. Also, by increasing the process duration, the deposition rate decreased due to the reduction of the available surface for carbon deposition. In other words, due to the increase in density, and decrease in both porosity and specific surface area, the thermal conductivity coefficient and the bending strength of the samples increased. The composite specimens’ SEM images of the fracture surface indicated a weak interface between the carbon fibers and the carbon layer developed by the CVI process. The structural analyses showed that the morphology of carbon growth during the CVI process was initially laminar, but changed to rough-laminar (RL) with the higher duration of the CVI process.
        4,800원
        124.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon (AC) injection has been regarded as one of the most effective control technologies for Hg0 removal in flue gas. It is worthwhile to explore new and simple preparation methods for AC with low cost and high Hg removal capacity. In this study, a biomass based AC was successfully prepared from levant cotton exocarp using ZnCl2 activation. The mercury adsorption efficiency and mechanism were studied via the fixed bed experiments. Activator, reaction temperature and components of simulated coal-fired flue gas were investigated. Brunauer–Emmett–Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM–EDX) and X-ray photoelectron spectroscopy (XPS) were applied for morphology characterization of the prepared AC and discussion of the possible adsorption mechanism. The adsorbed mercury species and the physiochemical properties of prepared AC were discussed. The results showed that (1) Hg0 removal efficiency could reach up to 90% at 150 ℃ under simulated flue gas (SFG); (2) Hg0 adsorption was controlled by the combination of physical and chemical mechanisms.
        4,300원
        125.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the pyrolytic carbon (PyC) deposition rate of Carbon/Carbon (C/C) composites prepared by the traditional chemical vapor infiltration (CVI) method, the 3D Ni/wood-carbon (3D Ni/C) catalyst was introduced into the CVI process. The effects of catalyst on the density of C/C composites were studied, and the deposition rate and morphologies of PyC were investigated after catalytic CVI. The morphologies of catalyst and PyC were characterized by scanning electron microscope and polarized light microscopy. The catalytic deposition mechanism of PyC was studied by density functional theory. The experimental results show that the initial carbon deposition efficiency of the catalytic pyrolysis process was 3–4 times that of the noncatalytic process. The catalyst reduced the energy barrier in the first step of deposition reaction from 382.55 to 171.67 kJ/mol according to simulation results. The pyrolysis reaction energy with Ni catalyst is reduced by 54% than that without the catalyst.
        4,000원
        126.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pore structure of pitch-based activated carbon prepared by physical activation was improved by nitric acid treatment of pitch. The nitric acid treatment introduced oxygen and nitrogen functional groups on pitch, and increased pitch molecular weight by cross-linking. The introduced oxygen and nitrogen functional groups on pitch were removed during the carbonization process, so they did not directly affect the physical activation process. The increased pitch molecular weight induced an increase of the pitch softening point. The increased softening point prevented rearrangement between the pitch molecules during the carbonization process, thereby inhibiting the orientation improvement of pitch molecules. The crystal degree of the carbonized pitch was reduced due to the inhibition of the orientation improvement. The reduced crystal degree increased reactivity between carbonized pitch and activation agent ( CO2) and formed micropores, so that activated carbon with a high specific surface area could be prepared.
        4,000원
        127.
        2022.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous mullite-corundum ceramics were prepared using organic foam impregnation method with alumina and silica as raw materials. The influence of alkaline treatment and surfactant modification on polyurethane foam were studied. Effects of sintering process and material composition on porous mullite-corundum ceramics were investigated. The results show that the hang-pulp quantity of polyurethane foam increases with alkaline treatment. After treatment with 3 wt% SDS solution, the hang-pulp quantity of polyurethane foam further improved. Open porosity of sample decreased with elevation of sintering temperature and holding time, and compressive strength of sample showed a trend opposite to the change of porosity. The open porosity of the sample was enhanced by the increase of m(Al2O3/SiO2); the compressive strength decreased with increase of m(Al2O3/SiO2). However, when m(Al2O3/SiO2) was 2.5, the compressive strength of the sample reached 6.23 MPa, and the open porosity of the sample was 80.7 %.
        4,000원
        128.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mercury ion ( Hg2+) is regarded as one of the toxic cations that is extremely harmful and dangerous to human health and the environment. With this growing awareness, it is imperative that facile and rapid sensing systems developed for the detection of Hg2+. Due to excellent sensitivity and selectivity, graphene quantum dots (GQDs), a zero-dimensional carbon nanomaterial, are attracting the attention of researchers as promising candidates as fluorescent probes for Hg2+ detection. This study aimed at conducting an in-depth review of recent advances into GQD-based materials as fluorescent probes in Hg2+ sensing. This systematic review was carried out by covering three main databases, namely, Scopus and Science Direct as the dominant databases, followed by Google Scholar as the supporting database. GQD-based materials encompassing bare GQDs, N-GQDs, B, N-GQDs, N, S-GQDs, N, K-GQDs, RhB-GQDs, Cys-GQDs, PEHA-GQD-DPA, Gly-GQDs, Mn(II)-NGQDs, NH2– Ru@ SiO2- NGQDs and FA-GQDs were discussed thoroughly with regard to their synthesis strategies, along with their potential application in the detection of Hg2+. The doping of heteroatoms is envisaged to enhance the quantum yield and selectivity of bare GQDs. This review might unlock a wide range of opportunities for the application of various GQD-based materials as an adaptable, feasible and scalable approach to the detection of Hg2+.
        6,100원
        129.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The carbon-based nanostructures are in limelight due to their widespread applications in nano-to-micro-scale technologies. The carbon dots are known for their unique physical, electrical, optical, chemical and biological properties. The carbon dots (CDs) are being produced through several well-developed synthesis methods, one of which is the green sonochemical. This method is preferred over others because it is a green source of energy, facile, fast, low-temperature process, non-toxic and less expensive. Despite the fact of using 90% less energy than other methods, this method has been overlooked in the published literature. It is possible to prepare pure and doped CDs of low toxicity and controlled physicochemical properties through sonochemical method. In recent years, sonochemically produced CDs have been tuned and characterized for a variety of applications. This review has explored the merits and demerits of sonochemical method in comparison to the other methods for the synthesis of pure CDs and their nanocomposites. The role of multiple factors in tailoring the specific parameters of CDs for their application in antibacterial, polymerization, tissue engineering, catalysis, bio-imagining, supercapacitors, drug delivery and electric devices is also elaborated in this review. This review also concludes on future directions in the applications of sonochemically produced CDs.
        5,100원
        130.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Various jellies were produced depending on the type and concentration of gelling agent (nine types), which added a single or double agent in jelly production. Firstly, jelly was manufactured using nine different single gelling agents and characterized. Secondly, six suitable gelling agents were selected to combine double gelling agents among nine gelling agents. To find the optimum gelling agent condition, jelly was intentionally made around 3.6-3.7 pH and 4- 5 N fracturability. A total of 1.2% gelling agent (both single and double agents) was suitable for making jelly (3.6- 3.7 pH, 4-5 N fracturability). According to the analytical result, the optimum single gelling agent was κ-carrageenan and gellan gum, while a suitable combination of double gelling agents was κ-carrageenan and gellan gum at ratios of 1.0:0.2, 0.8:0.4, and 0.6:0.6 and agar and locust bean gum at ratios of 0.8:0.4, 0.6:0.6.
        4,000원
        131.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh- energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600oC.
        4,000원
        132.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 간호대학생의 진로정체감과 진로의사결정유형이 진로준비행동에 미치는 영향을 파악 하기 위해 시행하였다. 연구대상자는 J도 소재 3,4학년 간호대학생 198명으로, 2021년 6월 14일부터 6월 27일까지 온라인 설문지를 이용하여 자료를 수집하였다. 자료는 SPSS/WIN 23.0 프로그램을 이용하여 기 술통계, 독립 t-test, one-way ANOVA, Pearson’s correlation, Hierarchical regression으로 분석하였다. 연구결과, 진로정체감 2.79점(범위 1∼4), 합리적 유형 3.78점(범위 1∼5), 직관적 유형 3.38점(범위 1∼5), 의존적 유형 3.01점(범위 1∼5), 진로준비행동 3.51점(범위 1∼5)이었다. 진로준비행동은 진로정체감 (r=.40, p<.001), 합리적 유형(r=.50, p<.001), 직관적 유형(r=.22, p=.002)과 양의 상관관계가 있었고, 의 존적 유형(r=-.20, p=.004)과는 음의 상관관계가 있었다. 진로준비행동에 영향을 미치는 요인은 진로정체 감(β=.23, p=.001), 합리적 유형(β=.31, p<.001), 직관적 유형(β=.27, p<.001), 의존적 유형(β=-.20, p=.002)으로 나타났다. 이 변수들은 진로준비행동을 24.6%p 설명하였다(F=11.93, p<.001). 본 연구결과를 바탕으로 간호대학생의 진로준비행동을 향상시키기 위해서 진로정체감 확립과 진로의사결정 유형에 따른 진로지도를 포함시킨 프로그램 개발 및 적용을 제안한다.
        4,300원
        133.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 나노섬유를 제조하는데 빠르고 효과적인 전기방사법을 이용하여 PVA(Polyvinyl alcohol)와 AgNO3를 혼합하여 제조한 용액을 금속산화물 기반 나노 섬유로 이루어진 투명 전극을 제조하고 그 특성을 분석하였다. PVA/AgNO3 혼합 용액을 전기방사법을 이용하여 유리기판 위에 나노 섬유 구조체 형태로 방사하여 250 ℃에서 2 시간 동안 열처리 과정을 통해 전기 전도성이 향상된 은 나노 섬유 기반 투명 전극을 제조하였다. 제조된 투명전극은 four-point probe 장비를 이용하여 전기적 특성을 분석하였으며, UV - Vis spectrophotometer 를 이용하여 제조된 투명전극의 투과도를 확인하였다. 또한, Scanning Electron Microscopy (SEM)과 Energy Dispersive Spectrometer(EDS)를 통해 은 나노 섬유의 표면 특성과 성분을 확인하였다. 이러한 분석들을 통해, 전기 방사 시간에 따른 면 저항과 투과도의 최적화된 조건을 확인할 수 있었으며, 은 나노 섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 태양전지, 디스플레이, 터치스크린과 같은 차세대 유연 디스플레이에 적용 가능성을 보여주었다.
        4,000원
        134.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Purpose: This study aimed to understand the effect of extra-corporeal membrane oxygenation (ECMO) preparation education implemented with smart glasses in augmented reality on the performance ability, performance confidence, and educational satisfaction of clinical nurses. Method: The participants were clinical nurses at B hospital—27 in the experimental group and 25 in the control group. The measurement tools were performance ability (24 items), performance confidence (11 items), and educational satisfaction (9 items). The experimental group intervention used augmented reality with smart glasses, and the control group used video resources. The collected data were analyzed by t-test, x2-test, and ANCOVA using the SPSS Statistics for Windows, version 25.0. Results: The performance was significantly higher in the experimental group than in the control group (F = 104.83, p < .001). Performance confidence was considerably higher in the experimental group than in the control group (F = 2.09, p = .041). Finally, educational satisfaction was significantly higher in the experimental group than in the control group (F = 4.52, p < .001). Conclusion: It was confirmed that ECMO education implementing augmented reality with smart glasses is an effective method for improving performance ability, performance confidence, and educational satisfaction among clinical nurses.
        4,200원
        135.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Republic of Korea is expected to participate in the denuclearization verification activities by the International Atomic Energy Agency (IAEA) in case any neighboring countries declared denuclearization. In this study, samples for the verification of nuclear activities in undeclared areas were selected for the denuclearization of neighboring countries, and the appropriateness of the procedures was considered. If a country with nuclear weapons declares denuclearization, it must be accompanied by the IAEA’s verification regarding nuclear materials and weapons in the declared and undeclared areas. The analysis of the process samples or on-site environmental samples and the verification of undeclared nuclear facilities and materials aid in uncovering any evidence of concealment of nuclear activity in undeclared areas. Therefore, a methodology was established for effective sampling and analysis in accordance with proper procedures. Preparations for sampling in undeclared areas were undertaken for various potential scenarios, such as, the establishment of zones according to radiation dose, methods of supplying electricity, wireless communication networks, targets of sampling according to characteristics of nuclides, manned sampling method, and unmanned sampling method. Through this, procedures were established for pre- and post-site settings in preparation for hazards and limiting factors at nuclear inspection sites.
        4,200원
        136.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To increase the utilization of Centella asiatica (CA), enzymes such as cellulase and pectinase were added and the physicochemical properties of the treated CA were analyzed. In addition, apple-CA jam was prepared using the enzyme-treated CA, which had the best antioxidant properties, and the physicochemical and sensory qualities of the jam were measured. There was a high content of ascorbic acid, polyphenols, flavonoids, reducing sugar, amino acid, minerals and DPPH radical scavenging activity in the enzyme-treated group. The antioxidant component and activity in the jam prepared by adding enzyme-treated CA increased with an increase in the amount of enzyme-treated CA. In the soluble solids, the higher the amount of enzyme-treated CA, the higher the value, but there was no significant difference in pH. The sensory evaluation of the jam, in particular the taste, showed that the highest preference was observed when the enzyme-treated CA was added in the range of 5.0~6.7%, and the control group showed the lowest preference. There was no significant difference in flavor and spreadability among the treatment groups, however, the control group showed the highest color preference. In the overall acceptability, when 5.0% of enzyme-treated CA was added, the highest acceptability was shown.
        4,000원
        137.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.
        4,000원
        138.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 비용매 유도 상분리법을 이용하여 폴리에테르이미드 계열의 중공사형 분리막을 제조하였다. 제조 된 중공사막의 모폴로지 조절을 위해 첨가제로는 THF, Ethanol, LiNO3를 사용하였다. 또한 높은 수소분리막의 개발을 위해 모폴로지와 기체투과성능을 특성평가를 통해 방사조건을 최적화하였다. 그 결과 THF의 함량이 증가할수록 수소/이산화탄소 선택도가 증가하였다. 하지만 trade-off 관계로 인하여 투과율은 감소하였다. Ethanol을 첨가하였을 때는 finger-like 구조를 나타냈고, LINO3를 첨가하였을 때 Sponge 구조를 보였다. 특히, PDMS 코팅층을 최적화한 중공사막의 경우, 투과율은 40 GPU, 수소/이산화탄소 선택도는 5.6을 나타냈다.
        4,800원
        139.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 낮은 막 저항을 가지는 알칼리 수전해 시스템 적용을 위한 격리막 제조를 위하여 PPS (Polyphenylene sulfide)를 지지체로 사용하고 Polysulfone과 무기물 첨가제를 이용하여 격리막을 제조한 뒤, 지지체의 두께와 다공도에 대한 영향을 분석하였다. 지지체로 사용된 PPS 펠트를 온도(100°C, 150°C, 200°C)와 압력(1톤, 2톤, 3톤, 5톤)의 변수를 두어 압축을 진행 하여 두께를 조절하고자 하였으며, 무기입자로서 친수성이 높고 내알칼리성이 뛰어난 BaTiO3와 ZrO2를 사용하여 polysulfone과 함께 슬러리를 제조하고 압축한 PPS 펠트 위에 캐스팅하여 다공성 격리막을 제조할 수 있었다. 전자주사현미경(SEM)을 통해 압축 조건에 따른 분리막의 모폴로지 변화를 확인하고, 기공도를 계산하였으며, 압축 조건이 증가할수록 두께와 기공도가 감소하는 경향을 확인하였다. 수전해용 격리막으로서 사용이 가능한지를 확인하기 위하여 다양한 특성 평가를 진행하였다. 기계적강도를 측정한 결과 압축 조건(온도와 압력)이 증가할수록 인장강도가 점차 증가하는 경향을 확인하였다. 최종적으로 내알칼리성 테스트 를 통하여 제조한 다공성 격리막이 우수한 내알칼리성을 가지는 것을 확인하였고, I-V 테스트를 통하여 100°C와 150°C 조건에서 압축된 막들이 기존의 압축하지 않은 막보다 낮은 전압을 가지며 성능이 향상되었다는 것을 확인하였다.
        4,500원
        140.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Poly(vinylidene fluoride) (PVDF) 막은 내구성 및 열적⋅화학적 안정성 등의 물성은 우수하나 소수성이 커서 수투과도가 낮고 단백질 및 유기물에 의한 막오염이 쉽게 발생한다. 본 연구에서는 PVDF 막의 내오염성을 개선시키고자 바이오 기능성 물질인 β-cyclodextrin (β-CD)을 PVDF 막 구조 내에 분산 함침시킨 PVDF/β-CD 혼합기질 비대칭막을 상변환 법을 통해 제조하고, β-CD 함침량에 따른 순수 투과 유속(PWF) 측정과 BSA 용액을 대상으로 한 막여과 실험을 수행하여 내오염성 특성을 평가하였다. 이 결과 PVDF 고분자 매질 내에 β-CD를 함침시키면 막의 친수성을 증가시켜 접촉각을 감소시키고 이로 인해 내오염성을 향상시킬 수 있었다. β-CD 함침량이 2 wt%인 도프용액을 사용하여 제조된 PVDF/β-CD 혼합 기질 비대칭막의 PWF는 64 L/m2⋅h, BSA 배제도는 95%를 나타내었으며, β-CD를 첨가하지 않고 제조된 pristine PVDF 막에 비해 투과 유속 향상성이 최대 80%에 달해 β-CD를 첨가시킴으로서 PVDF 막의 내오염성을 증가시킬 수 있었다.
        4,000원