본 연구는 북한이 2024년을 전쟁 준비 완성의 해로 선언하고 연이어 미사일을 발사하여 안보를 위협하는 상황에서, 빅데이터 분석을 활용하 여 한국 언론보도와 포털 사이트에 나타난 북핵 및 미사일 위협에 대한 담론과 인식의 특성을 실증적으로 분석하고, 그에 따른 시사점을 도출하 는 것을 목적으로 한다. 이를 위해 국내 주요 언론보도와 포털 사이트에 서 총 33,318건의 데이터를 수집하여, TF-IDF 분석을 통해 상위 50개 의 주요 키워드를 도출하고, 사회연결망 분석을 통해 각 키워드 간의 연 결 정도와 구조를 파악하였다. 분석 결과, 러시아-우크라이나 전쟁, 이스 라엘-하마스 전쟁 등 국제적 안보 불안과 동북아에서의 북-러 군사협력 및 한-미-일 군사협력의 대립 구도 등이 사회적 담론 형성에 큰 영향을 미친 것으로 나타났다. 이에 따라 한-미-일 군사협력 강화와 확장 억제 전략의 신뢰성을 높이고, 사회적 차원에서 위기의식과 안보의식의 제고 가 필요하다는 시사점이 도출되었다.
The pressure sensor had been widely used to effectively monitor the flow status of the water distribution system for ensuring the reliable water supply to urban residents for providing the prompt response to potential issues such as burst and leakage. This study aims to present a method for evaluating the performance of pressure sensors in an existing water distribution system using transient data from a field pipeline system. The water distribution system in Y District, D Metropolitan City, was selected for this research. The pressure data was collected using low-accuracy pressure sensors, capturing two types of data: daily data with 1Hz and high-frequency recording data (200 Hz) according to specific transient events. The analysis of these data was grounded in the information theory, introducing entropy as a measure of the information content within the signal. This method makes it possible to evaluate the performance of pressure sensors, including identifying the most sensitive point from daily data and determining the possible errors in data collected from designated pressure sensors.
PURPOSES : The reliability of traffic volume estimates based on location intelligence data (LID) is evaluated using various statistical techniques. There are several methods for determining statistical significance or relationships between different database sets. We propose a method that best represents the statistical difference between actual LID-based traffic volume estimates and the VDS values (i.e., true values) for the same road segment. METHODS : A total of 2,496 datasets aggregated for 1-h LID and VDS data were subjected to various statistical analyses to evaluate the consistency of the two datasets. The VDS data were defined as the true values for comparison. Four different statistical techniques (procrutes, 2-sample t-test, paired-sample t-test, and model performance rating scale) were applied. RESULTS : In cases where there is a specific pattern (e.g., traffic volume distribution considering peak and off-peak times), distribution tests such as Procrustes or Kolmogorov-Smirnov are useful because not only the prediction accuracy but also the similarity of the data distribution shape is important. CONCLUSIONS : The findings of this study provide important insight into the reliability of LID-based traffic volume estimation. To evaluate the reliability between the two groups, a paired-sample t-test was considered more appropriate than the performance evaluation measure of the machine-learning model. However, it is important to set the acceptance criteria necessary to statistically determine whether the difference between the two groups in the paired-sample t-test varies according to the given problem.
PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.
기존 항만 건설 시 화물차 전용 주차장이 고려되지 않았으며, 해양수산부의 ‘제2차 신항만건설기본계획(2019~2040)’에 따라 총 11 개의 새로운 항만이 건설될 예정이다. 따라서 화물차 전용 주차장 설계에 대한 연구가 필요한 실정이다. 현재 항만에서는 화물차 전용 주차 공간 부족으로 불법 주차가 발생하고 있으며, 이로 인해 교통사고 위험이 증가하고 있다. 기존 연구에서는 전체 항만을 대상으로 한 분류 방법이 제안되었으나, 신설 항만 설계 시 과소 또는 과대 설계 문제를 초래한다. 따라서 본 연구는 부두별로 4대 요소(안벽 길이, 야적장 면적, 접안 능력, 하역 능력)를 기반으로 분류하며, DWT와 TEU 단위를 고려하여 데이터를 분석하였다. 14개 국가 관리 항만의 총 380 부두 데이터를 조사하고, 이를 통해 그룹핑 작업을 통해 정규화 곡선으로 평균 ± 표준편차를 기준으로 항만 전체 부두 에 대한 분류를 실시하였다. 이를 통해 향후 연구결과를 통해 검증 후 최종 분류방법을 결정하여 새로운 항만분류법을 제안하고, 제안 된 방법론의 분류검증을 실시할 예정이다.
최근 급격한 기후 변화로 인해 도로 교통사고의 발생 빈도가 증가하고 있으며, 특히 겨울철에 자주 발생하는 도로 살얼음(블랙아이 스) 현상이 주요 원인 중 하나로 지목되고 있다. 도로살얼음의 형성 메커니즘은 다양한 요인에 따라 복합적으로 작용하며, 당시의 도 로 기상 조건과 도로의 기하학적 구조에 따라 얼음의 형태 및 강도가 결정된다. 그중에서도 도로 노면 온도는 도로살얼음 형성에 중 요한 요소로, 여러 나라에서 겨울철 교통안전 평가를 위한 주요 지표로 사용되고 있다. 그러나 현재 도로 노면 온도에 대한 명확한 정 의가 부족할 뿐만 아니라, 측정 방법에 따라 계측 편차와 온도 손실 등 여러 한계가 존재해 정확한 온도 측정이 어려운 실정이다. 이 에 본 연구는 지중 깊이에 따른 온도 데이터와 도로 기상 데이터를 결합하여 보다 정밀한 도로 노면 온도 예측 방법을 제시하는 것을 목적으로 한다. 연구를 위해 지중 깊이 2cm, 3cm, 4cm, 5cm, 7cm, 9cm, 15cm, 20cm에 각각 온도 센서를 설치하였으며, 기상 데이터는 해당 지점에서 2m 떨어진 AWS(Automatic Weather System)를 통해 대기 온도, 습도, 강수량, 일사량 등의 정보를 수집하였다. 이를 바 탕으로 지중 온도와 기상 조건의 상관관계를 활용하여 노면 온도를 예측하는 방법론을 도출하였다. 본 연구의 결과는 도로 노면 온도 예측의 정확성을 향상시킬 뿐만 아니라, 새로운 접근 방식을 통해 노면 온도의 정의를 재정립하는 데 기여할 것으로 기대된다.
국내 콘크리트 구조물의 노후화가 진행됨에 따라 안전관리를 위한 효과적인 보수 및 보강이 요구되고 있다. 특히, 교량 바닥판은 교통하중과 염화물 침투 등 다양한 유해환경에 직접 노출되어 지속적인 열화가 발생하고 있다. 국내외에서는 교량 바닥판 유지보수 의사결정을 위해 비파괴 조사 방법 중 하나인 지표투과레이더(Ground Penetrating Radar, GPR) 탐사가 주로 활용되고 있다. 차량형 다채널 GPR 장비를 통해 취득된 방대한 양의 탐사자료는 해석하는 데 많은 시간이 소요되며 분석가의 주관이나 숙련도에 따라 해석결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 최근에는 딥러닝 (Deep Learning) 기반의 GPR 자료해석 기법들이 제안되고 있다. 본 연구에서는 교량 바닥판 상태 평가 작업 효율 향상 을 위해 딥러닝 기반 GPR 자료해석 기법을 적용하였다. 현장자료 예제로는 영동대교 정밀안전진단 과업에서 교량 바닥 판 상태조사를 위해 취득한 GPR 자료를 사용하였으며 딥러닝 기법 적용 결과를 분석가의 해석결과와 비교하여 예측 성 능을 평가하였다.
본 연구의 목적은 자료포락분석(Data Envelopment Analysis)을 사용 하여 대구경북강원권에 소재한 23개 대학의 운영 효율성을 분석 및 평가 하고, 효율적 운영을 위한 필요한 개선 방향을 탐색하는 것이다. 대구권 2개교, 경북권 14개교, 강원권 7개교, 총 23개 대학을 연구 대상으로 하 였으며, 투입변인은 교육비 환원율, 전임교원 확보율, 장학금 비율, 교사 확보율, 전임교원 1인당 교내연구비, 전임교원 1인당 교외연구비, 산출변 인은 정원내 신입생 충원율, 정원내 재학생 충원율, 졸업생의 취업률, 전 임교원 1인당 등재(후보)지 논문 실적으로 선정하였다. 기술통계를 위해 서는 E-STAT 3.0과 SPSS 25.0을 사용하였고, DEA분석을 위해서는 Frontier Analyst 및 B-Box 1.7.8을 활용하였다. 첫째, 연구 결과, 전체 대학 중 절반 이상이 상대적으로 효율적인 운영을 하고 있으며, 일부 대 학은 비효율적으로 운영되고 있어 개선의 여지가 있음을 확인하였다. 둘 째, 투입지향 및 산출지향 모형에서 유사한 결과가 도출되었으며, 투입과 산출 변인을 각각 관리하기보다는 동시에 종합적으로 관리하는 접근이 대학 운영 효율성 제고에 필요함을 확인하였다. 셋째, 대학이 주목해야 할 핵심 지표들을 파악함으로써, 자원의 효율적인 배치와 활용을 위한 개 선 방향을 확인할 수 있었다. 자료포락분석을 통한 대학의 운영 효율성과 비효율성을 구체적으로 파악한 본 연구 결과를 바탕으로, 대학의 자원을 보다 효과적으로 활용할 수 있는 운영 전략을 수립할 수 있을 것이다.
본 연구는 치유정원 및 치유정원 내 도입 프로그램과 관련된 시기별 이용행태의 변화를 파악하여 프로 그램 및 서비스 제공에 있어 개선하는데 도움이 되는 기초자료를 제공하는 것을 목적으로 한다. 이를 위해 텍스트마이닝 기법을 활용하고 『수목원정원법』시행 및 코로나19 전후를 기점으로 하여 2014 년, 2019년, 2023년 세 가지 시기로 구분하여 시계열적으로 시기별 이용행태 간의 변화를 조사하였다. 연구결과 치유정원과 치유정원 내 도입 프로그램은 이용자들에게 있어 긍정적 경험으로 나타났다. 프 로그램의 경우 초기에는 치유농업 및 원예를 중심으로 시작되었으나 시간이 지남에 따라 산림치유를 비롯하여 가드닝을 포함한 다양한 활동으로 확장되었으며, 이용자 계층 또한 다양한 계층으로 확대되 었다. 아울러 치유정원은 원예치료, 산림치유 등 다양한 자연환경 기반 치유분야의 도입요소로 사용됨 에 따라 혼용되어 사용되고 있는 것으로 나타났다. 따라서 치유정원에 대한 명확한 개념정립과 함께 다양한 계층을 고려한 프로그램이 필요한 것으로 나타났다.
본 논문은 중국의 사이버 보안법을 둘러싼 쟁점을 살펴보고, 이 법이 기술무역장벽협정(TBT)의 규정을 위반하는지 여부를 검토하였다. 각 국 가들이 중국의 사이버 보안법을 TBT로 간주하는 주요 이유는 국경 간 데이터 흐름에 대한 제한 때문이다. 분석 결과, 국경 간 데이터 흐름에 대한 국가들의 상이한 태도 이면에 존재하는 핵심 문제는 주요 이해 관 계자들이 사이버 보안을 정의하는 방식에 있어 큰 차이가 있다는 것이 다. 따라서 주요 사이버 강국들은 사이버 보안을 정의하는 데 있어 합의 에 도달하는 것을 우선적으로 고려해야 한다. 각 국가들은 자국의 사이 버 전략을 강화하기 위해 관련 행정 규정, 부처 규칙, 및 규범에 관한 문서를 발행 및 개선하여 네트워크 운영자와 법 집행 기관을 위한 구체 적인 시행 기반을 제공해야 한다. 아울러 한국 정부는 중국과의 중요한 경제 관계와 국가 안보 및 경제 성장을 위해 데이터 현지화와 국경 간 데이터 흐름에 관한 정책의 균형이 필요하다고 강조한다.
The purpose of this study is to produce virtual models of women aged in their 60s and to implement the virtual clothing with jackets. We referred to 3D images of standard and obese body types from the 8th Size Korea and attempted to create avatars based on their images through the various trials. Final virtual models were made to reflect the appearance of women in their 60s. For the standard body type, a 3D image with average body measurements was selected. Based on numerous trials aimed at turning her image into an avatar, the auto-converted avatar on CLO 3D was slimmer than the woman in the original image, and hence it was not suitable for the virtual model. After blending, we converted the image into an uneditable avatar for which only the joint points could be moved, thereby creating an avatar that was identical to the original image. We also selected an image of an obese woman with a “beer bottle” body shape from the 8th Size Korea. We created an avatar that resembled her shape by also converting it into an uneditable avatar for which only joint points could be moved. To use these avatars in virtual clothing, we removed masks of avatars and made faces, hair styles, and skin tones representing women in their 60s. The moderately-sized classic jackets were smooth on both virtual models and fitted satisfactorily. This study demonstrated the applicability of virtual model production of various body types or ages in special clothing studies.
We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30o to 60o in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.
The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
세계 해양산업은 자율운항선박 기술의 등장으로 급속도로 발전하고 있으며, 해양 데이터에서 파생된 인공지능 활용에 관한 관 심이 높아지고 있다. 다양한 기술 발전 중에서 선박 항로 군집화는 자율운항선박 상용화를 위한 중요한 기술로 부각되고 있다. 항로 군집 화를 통해 해상에서 선박 항로 패턴을 추출하여 가장 빠르고 안전한 항로를 최적화하고 충돌 방지 시스템의 개발에 기반이 된다. 항로 군 집화 알고리즘의 정확성과 효율성을 보장하기 위해 고품질의 잘 처리된 데이터가 필수적이다. 본 연구에서는 다양한 항로 군집화 방법 중 항로의 실제 형태와 특성을 정확히 반영할 수 있는 선박 항로 유사도 기반 군집화 방식에 주목하였다. 이러한 방식의 효율을 극대화하 기 위해 최적의 데이터 전처리 기술 조합을 구성하고자 한다. 구체적으로, 4가지의 선박 항로 간 유사도 측정법과 3가지의 차원 축소 방 법을 조합하여 연구를 진행하였다. 각 조합에 대해 k-means 군집 분석을 수행하고, 그 결과를 Silhouette Index를 통해 정량적으로 평가하여 최고 성능을 보이는 전처리 기법 조합을 도출하였다. 본 연구는 단순히 최적의 전처리 기법을 찾는 것에 그치지 않고, 광범위한 해양 데 이터에서 의미 있는 정보를 추출하는 과정의 중요성을 강조한다. 이는 4차 산업혁명 시대의 해양 및 해운 산업이 직면한 디지털 전환에 효과적으로 대응하기 위한 기초 연구로서 의의를 갖는다.
본 연구는 연안해양 수치모델에 활용되는 LDAPS 강우예보 자료의 시공간적 오차와 한계점을 분석하고 자료의 신뢰성을 검증 하였다. LDAPS 강우자료의 검증은 진해만 주변 우량계 3개소를 기준으로 2020년의 강우를 비교하였으며 우량계와 LDAPS의 비교 결과, LDAPS 강우자료는 장기적인 강우의 경향은 대체로 잘 재현하였으나 단기적으로는 큰 차이를 보였다. 정량적인 강우량 오차는 연간 197.5mm였으며, 특히 하계는 285.4mm로 나타나 계절적으로 강우변동이 큰 시기일수록 누적 강우량의 차이가 증가하였다. 강우 발생 시점 의 경우 약 8시간의 시간 지연을 나타내어 LDPAS 강우자료의 시간적 오차가 연안해양환경 예측 시 정확도를 크게 감소시킬 수 있는 것 으로 나타났다. 연안의 강우를 정확히 반영하지 못하는 LDAPS 강우자료를 무분별하게 사용할 경우 연안역에서 오염물질 확산 또는 극한 강우로 인한 연안환경 변화 예측에 심각한 문제를 발생시킬 수 있으며 LDAPS 강우자료의 적절한 활용을 위해서는 검증과 추가적인 개선 을 통한 정확도 향상이 필요하다.
Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.
PURPOSES : This study aims to investigate the reliability of the real-time estimation of intersection traffic volumes based on the integration of location intelligence data and smart intersection data. METHODS : Location intelligence data (LID) and smart intersection data were obtained at eight intersections in Inju-daero, Incheon. The two datasets were then integrated to estimate traffic volumes for intersections in the shadow section, where traffic information was not expected to be obtained. The traffic estimation accuracy was evaluated using the total traffic, approach traffic, and turning movement volumes at the intersections. The estimated traffic was compared with the actual traffic volumes in the smart intersection data to validate the reliability of traffic estimation. RESULTS : The average traffic estimation error for the total intersection volume was approximately 4.5% for the five intersections in the shadow section. The estimation errors for the approach volumes (less than 5%) were also consistently low, except from 12 pm to 1 pm. CONCLUSIONS : The findings of this study suggest that location intelligence data can be combined with smart intersection data to estimate real-time traffic for shadow sections on roadways. This could enable a cost-effective cooperative intelligent transport system (C-ITS) when the municipal budget is limited, ultimately leading to the sustainable operation of C-ITS.
최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
PURPOSES : In this study, a preliminary study on the optimal clustering techniques for the preprocessing of pavement management system (PMS) data was conducted using K-means and mean-shift techniques to improve the correlation between the dependent and independent variables of the pavement performance model. METHODS : The PMS data of Jeju Island was preprocessed using the K-means and mean-shift algorithms. In the case of the K-means method, the elbow method and silhouette score were used to determine the optimal number of clusters (K). Moreover, in the case of the mean-shift method, Scott’s rule of thumb and Silverman’s rule of thumb were used to determine the optimal cluster bandwidth. RESULTS : The optimal cluster sets were selected for the rut depth (RD), annual average daily traffic (AADT), and annual maximum temperature (AMT) for each clustering technique, and their similarities with the original data were investigated. Additionally, the correlation improvement between the dependent and independent variables were investigated by calculating the clustering score (CS). Consequently, the K-means method was selected as the optimal clustering technique for the preprocessing of PMS data. The K-means method improved the correlations of more variables with the dependent variable compared to the mean-shift method. The correlations of the variables related to high temperature—such as the annual temperature change, summer days, and heat wave days—were improved in the case wherein the AMT, a climate factor, was used as an independent variable in the K-means clustering method. CONCLUSIONS : The applicability of the clustering methods to preprocessing of PMS data was identified in this study. Improvements in the pavement performance prediction model developed using traditional statistical methods may be identified by developing a model using clustering techniques in a future study.
19세기 근대로 가는 길목에서 조선은 외세의 침입이라는 새로운 시대 상황을 맞게 되었다. 이러한 외압(外壓)에 대응하는 데 가장 근본이 되었 던 것이 당시는 수군(水軍)이라 불렸던 조선 해군(海軍)의 군사력이었고 할 수 있다. 이러한 인식을 바탕으로 본 연구는 19세기 조선 해군 전력 의 일단(一端)을 살펴볼 수 있는 실증적 사례 연구를 진행하였다. 구체적 으로 전라좌수영(全羅左水營)에 속해 있던 광양현(光陽縣)과 경상우수영 (慶尙右水營)에 속해 있던 하동부(河東府)의 수군 전력의 실태를 파악하 고자 하였다. 이들 두 군현은 19세기 ‘중기(重記)’ 자료가 남아 있다. 중 기 자료는 작성 당시 지방 군현의 군비 실태를 파악할 수 있는 가장 좋 은 자료이다. 따라서 이 중기 자료를 중심으로 19세기 조선 해군 전력의 일단을 살펴보았다. 이와 더불어 각종 관찬 자료와 읍지(邑誌), 사례(事 例) 등을 비교 검토하였다. 이 연구를 통해 19세기 조선 해군 전력의 일 단을 확인하였다. 당시 조선 정부는 해양 방위[海防]에 상당한 관심을 가 지고 있었지만 이에 대응한 해군 전력의 향상은 적절히 이루어지지 못한 것으로 보인다. 이는 본 연구를 통해 일부 확인되는 것처럼 특히 지방 군현의 수군 전력은 형식적 전력을 유지하는 데 그쳤고, 그 실제는 전력 이 약화되고 있었던 것으로 여겨진다.