YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.
In this study, an Co/Fe coated porcelain using a cobalt and ferrous sulfate was sintered at 1,250 oC. The specimens were investigated by HR-XRD, FE-SEM (EDS), Dilatometer, and UV-vis spectrophotometer. The surface of the porcelain was uniformly fused with the pigment, and white ware and celadon body specimens were densely fused to a certain thickness from the surface. Other new compounds were produced by the chemical reaction of cobalt/ferrous sulfate with the porcelain body during the sintering process. These compounds were identified as cobalt ferrite spinel phases for white ware and white mixed ware, and an andradite phase for the celadon body, and the amorphous phase, respectively. As for the color of the specimens coated with cobalt and ferrous mixed pigments, it was found that the L* value was greatly affected by the white ware, and the a* and b* values were significantly changed in the celadon body. The L* values of the specimens fired with pure white ware, celadon body, and white mix ware were 72.1, 60.92, 82.34, respectively. The C7F3 pigment coated porcelain fired at 1,250 oC had L* values of 39.91, 50.17, and 40.53 for the white ware, celadon body, and white mixed ware, respectively; with a* values of -1.07, -2.04, and -0.19, and at b* values of 0.46 and 6.01, it was found to be 4.03. As a new cobalt ferrite spinel phase was formed, it seemed to have had a great influence on the color change of the ceramic surface.
SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of 1300℃ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. Yb2O3 and SiO2 are used as the raw starting materials to form ytterbium disilicate (Yb2Si2O7). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., SiO2, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.
SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as Si3N4, AlN, Al2O3, and Yb2O3. In this study, we fabricate Ybm/3Si12-(m+n)Alm+nOnN16-n (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with β- SiAlON after gas-pressure sintering at 1820℃ for 90 min. under 10 atm N2 pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.
Rare-earth zirconates, such as lanthanum zirconates and gadolinium zirconates, have been intensively investigated due to their excellent properties of low thermal conductivity as well as chemical stability at high temperature, which can make these materials ones of the most promising candidates for next-generation thermal barrier coating applications. In this study, three compositions, lanthanum/gadolinium zirconates with reduced rare-earth contents from stoichiometric RE2Zr2O7 compositions, are fabricated via solid state reaction as well as sintering at 1600oC for 4 hrs. The phase formation, microstructure, and thermo-physical properties of three oxide ceramics are examined. In particular, each oxide ceramics exhibits composite structures between pyrochlore and fluorite phases. The potential of lanthanum/ gadolinium zirconate ceramics for TBC applications is also discussed.
With increase in operating temperature of gas turbine for higher efficiency, it is necessary to find new materials of TBC for replacement of YSZ. Among candidate materials for future TBCs, zirconate-based oxides with pyrochlore and fluorite are prevailing ones. In this study, phase structure and thermal conductivities of oxide system are investigated. system are comprised by selecting as A-site ions and as B-site ion in pyrochlore structures. With powder mixture from each oxide, oxides are fabricated via solid-state reaction at . Either pyrochlore or fluorite or mixture of both appears after heat treatment. For the developed phases along compositions, thermal conductivities are examined, with which the potential of compositions for TBC application is also discussed.
As operating temperatures of engines or turbines continually increase for higher efficiency, significant amounts of researches have been focused on finding new materials, which would be alternatives to conventional yttria-stabilized zirconia (YSZ) for thermal barrier coatings (TBCs). In this study, phase evolution and thermo-physical properties of pyrochlore systems are investigated for TBC applications. systems are comprised by selecting as A-site ions and as B-site ions in pyrochlore structures. For the developed phases in compositions, thermo-physical properties such as thermal conductivity, thermal expansion coefficient are examined. The potential of these compositions for TBC application is also discussed.
Thermal barrier systems have been widely investigated over the past decades, in order to enhance reliability and efficiency of gas turbines at higher temperatures. Yttria-stabilized zirconia (YSZ) is one of the most leading materials as the thermal barriers due to its low thermal conductivity, thermodynamic stability, and thermal compatibility with metal substrates. In this work, rare-earth oxides with pyrochlore phases for thermal barrier systems were investigated. Pyrochlore phases were successfully formed via solid-state reactions started from rare-earth oxide powders. For the heat-treated samples, thermo-physical properties were examined. These rare-oxide oxides showed thermal expansion of and thermal conductivity of 1.2~2.4 W/mK, which is comparable with the thermal properties of YSZ.
고온구조용 재료로의 사용이 기대되는 Al3Hf 및 Al3Ta 금속간화합물의 연성을 향상시키기 위하여 SPEX mill을 이용한 기계적합금화시 Ll2 상의 생성거동과 이에 미치는 제 3 원소의 영향을 조사하였다. Al-25%Hf 혼합분말의 경우에는 기계적합금화 6시간부터 Ll2Al3Hf 금속간화합물의 생성되었으나, Al-25%Ta의 경우에는 30시간까지도 D022 Al3Ta 금속간화합물만 생성되었고, Ll2상은 생성되지 않았다. Al-12.5%M-25%MTa(M = Cu, Zn, Mn, Fe, Ni) 조성으로 제 3 원소를 첨가하여 20시간 동안 기계적합금화한 결과 Cu과 Zn의 경우에는 D022 구조 금속간화합물만 생성되었고, Mn, Fe, Ni을 첨가한 경우에는 600˚C에서 등온열처리 후 D0(sub)22상으로 상변태되는 비정질상이 생성된 것으로 보아 이러한 제 3 원소의 첨가는 Cu와 Zn를 첨가한 경우에는 2원계와 마찬가지로 Ll2상과 D022 상간의 에너지 차이를 극복하기 못한 것으로 생각된다 한편, Al-12.5%M-25%Hf조성으로 Cu과 Zn를 첨가한 경우게는 2원계와 마찬가지로 Ll2구조의 금속간화합물이 생성되었으나, Mn, Fe, Ni을 첨가한 경우에는 Al-12.5%M-25%MTa(M = Cu, Zn, Mn, Fe, Ni) 계와 같이 비정질이 생성된 것으로 보아 Ni, Nn, Fe는 AL3X 금속간화합물을 비정질화시키는 경향이 강한 것으로 생각된다.로 생각된다.
Bi-Sr-Ca-Cu-O 계에서 상형성에 관해 연구하였다. 임계온도가 80K인 초전도체는 Bi-Sr-Ca-Cu의 몰비율이 2:2:1:2의 성분으로부터 solid state synthesis의 방법으로 합성하였다. 이때 이상에 대한 x-ray diffraction pattern은 모두 색인하였다. 2:2:1를 기본으로한 solid solution의 형성을 Bi2Sr2-xCa1+yCu2O8+δ으로 단일상(single phase)을 형성하고 있으며, 이때 x와 y의 범위는 0<x<0.3 그리고 0<y<0.3이다. 높은 임계온도의 초전도체상(2223)은 BiSrCaCu2Ox의 조성식으로부터 거의 순수한 상을 합성하였다. 이 상에 대한 합성조건은 특별히 구조상의 긴영역의 확산과 아울러 매우 좁은 온도영역의 안정성 때문에 매우 까다롭다. 이 실험의 결과 105K초전도체상은 오직 Cu의 양이 많은 조성으로부터만 형성되었고, 105K로 전이시 긴 저항꼬리가 있는 점으로 보아 grain boundaries 에서의 불순물로 추정된다.
기계적 합금화(mechanical alloying:MA) 방법에 의해 원소 Nb와 Al의 혼합분말로부터 금속간 화합물 NbA1₃와 비정질상을 얻었다. 혼합분말의 조성은 Nb-45wt%Al(75at%Al)으로 하였으며, 기계적 합금화는 고에너지 SPEX8000 mixer/mill을 사용하여 72시간까지 행하였다. 얻어진 분말은 XRD, DTA, SEM 및 TEM으로 분석했다. 기계적 합금화 초기 단계의 분말은 층상 구조를 나타냈고, 정상상태에 도달하였을 때는 분말 내에서 원소 Nb와 Al이 균일하게 분포되어 있었다. 4시간 기계적 합금화를 하였을 때 금속간 화합물 NbA1₃가 형성되었다. 기계적 합금화된 분말들은 안정한 NbA1₃형성 및 응력 완화에 해당되는 600℃ 근처에서 큰 발열 peak을 나타냈다.