PURPOSES : The objectives of this study are to evaluate the condition of concrete bridge decks using the multi-channel ground penetrating radar (GPR) testing and compare the value of its dielectric constant value with actual concrete condition. METHODS : The reflection coefficient method was used to measure the dielectric properties of concrete bridge decks. Air-coupled step-frequency GPR testing was used to measure the time taken for reflection from the interfaces between the layers. Specimens of the asphalt mixture and concrete bridge-deck were collected by field coring. GPR testing was conducted on two bridges with different concrete bridge deck conditions on national highways. After the GPR tests, the actual conditions of the concrete bridge deck were investigated using specimen coring. RESULTS : GPR testing indicated that the dielectric constants of concrete bridge decks in good condition ranged from 8 to 10, whereas those corresponding to poor condition ranged from 4 to 6. The results of GPR testing can determine the actual condition and degree of distress of concrete bridge decks determined from the specimen coring data. Therefore, GPR testing is appropriate for nondestructively evaluating the condition of a concrete bridge deck. CONCLUSIONS : The analysis results of the dielectric constants of the concrete bridge deck obtained from multichannel GPR testing were consistent with the actual bridge deck conditions. In the near future, an additional verification process for this approach under different bridge conditions will be required to improve its precision and ensure reliability.
교량 인프라는 국민의 경제와 사회적 활동에 반드시 필요한 물리적 기반시설이고, 국민의 안전과 편의성에 직결되는 시설이므로 국민의 입장에서 편익을 고려해야 한다. 교량의 구성요소 중 바닥판은 교량 전체의 생애주기 동안 필연적으로 교체 시기가 도래하고 파손 등으로 인한 부분 교체도 빈번하게 이루어지고 있다. 바닥판 교체공사 시 거더와 바닥판을 합성하는 기 존 용접 전단연결재의 문제점을 해결하기 위한 볼트 접합 전단연결재(DY볼트)는 바닥판 철거 공정에서 파쇄를 최소화하고 교 체공사를 위한 전단연결재 재시공이 용이하여 공사 기간을 기존 대비 단축할 수 있는 것으로 분석되었다. 공사기간 중 도로차 단으로 인해 발생하는 도로이용자비용을 산출하여 기존 공법과 비교하는 방법으로 볼트 접합 전단연결재를 적용한 강합성 교량 의 경제성을 도로이용자(국민) 입장에서 분석하였다.
PURPOSES : Steel deck bridges are the preferred structural type for reducing dead load, and the use of thin-layer asphalt concrete with excellent adhesion to the steel deck and excellent deformation followability is increasing for bridge pavements. However, because these materials are constructed at a high temperature of 240 °C or higher to maintain high fluidity during construction, excessive thermal deformation and stress may be temporarily induced in the steel deck. Therefore, the stability of the structure must be assessed by considering the environmental conditions of the site during pavement construction. Herein, a method is presented for estimating the heat source equation, in which conduction and convection effects are removed using temperature measurement data, for modeling U-rib using plate elements. The validity of the study is assessed by deriving the equivalent heat source equation using the temperature data measured from the underside of the steel deck while constructing a 40-mm-thick goose asphalt concrete pavement layer on a 12-mm-thick steel deck. In addition, the practicality is verified by performing heat transfer and thermal stress analyses. METHODS : By comparing the temperature data measured during the construction of high-fluidity asphalt concrete with the results of repeated heat transfer numerical analysis, heat source data without field conduction and convection conditions are obtained. Subsequently, a heat source equation suitable for the heat source data is derived using the least-squares method. RESULTS : The results of the heat transfer analysis using the equivalent heat source equation calculated using the presented method are almost consistent with the measured temperature data. In addition, the behavioral characteristics of the structure that matches the behavior of the actual structure can be derived through thermal stress analysis, which considers heat conduction and convection to adjacent members. CONCLUSIONS : Even when the steel deck and U-rib member are modeled as plate elements, thermal effect analysis can be performed reasonably while considering field conditions.
This paper dealt with the applicability of GFRP materials as reinforcements for a steel box girder bridge deck. The purpose of this study is to provide detailed design procedures with a code-based text for GFRP composites for civil engineering structures. From the example design, the deck was optimized from a serviceability perspective but was quite overdesigned with regard to flexural strength and creep rupture stress, due to its relatively low longitudinal modulus but high strength. We may conclude from these results that it is advisable to check the serviceability limits before optimizing the design for strength or starting the design from the serviceability calculation.
It has been more than twenty years since the application of GFRP bridge decks in construction fields. Recently, a few studies by governments and individual researchers have investigated in-use GFRP bridge decks. Areas of trouble include the problems of cracking, spalling and the de-bonding of the pavement or the wearing surface on GFRP bridge decks, all of which affect the long-term durability and serviceability of these new construction materials. Related to these problems, reflective cracks on asphalt pavement are directly related to pultruded GFRP bridge decks. This study investigates the behavior of an adhesive joint under weak-axis bending by tests and FE analyses to identify the causes of pavement cracks in in-use pultruded GFRP bridge decks. In detail, the flexural stiffness and the load-carrying capacities in strong and weak axes are measured during bending tests on pultruded GFRP decks. Next, tensile local failures of an epoxy adhesive due to the concentration of deformations at adhesive joints are identified via a weak-axis bending test. Finally, the tensile failure of an epoxy adhesive due to the local concentration of deformation at an adhesive joint under weak-axis bending is verified through a finite element analysis.
PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.
국내 고속도로의 교량은 2000년 이후 집중된 선형개량 및 신규 노선 증가 사업으로 10년 전과 비교하여 2배 이상 증가하였다. 이에 따라 유지관리 비용도 지속적으로 증가하고 있다. 현재 고속도로 유지관리 예산 비중이 가장 높은 항목은 아스팔트 교면 교량의 콘크리트 바닥판 열화에 의한 보강 부분이다. 2011년 고속도로 관리교량은 약 7,800여개에 도달한 시점에서 현재 방법으로는 향후 어느 정도 바닥판 보강 예산이 필요한지 어느 시기에 증액을 하여야되는지 명확하게 추정하기 어렵다. 본 연구에서는 신뢰도 분석 방법인 와이불 분포에 의한 생존 수명 예측 기법을 적용하여 현재 고속도로 아스팔트 계열의 교면 교량의 평균 수명을 추정하였고 이를 토대로 향후 예상 보강 비용을 추정하였다.
본 논문은 노후교량바닥판 대체용으로서 하이브리드 GFRP-강재 바닥판의 휨거동을 구조적 거동특성을 기술하고 있 다. 하이브리드 GFRP-강재 바닥판의 구조적 특성을 조사하기 위해 정적하중의 실험적 연구를 수행하였다. 하이브 리드 바닥판의 파괴모드는 초기항복을 지나서 연성거동을 나타내었다. 결과는 유한요소프로그램 ANSYS의 값과 비 교하였다. 제안된 하이브리드 바닥판이 교량적용에 유용함을 확인하였다. 하이브리드 바닥판의 두께는 유사한 휨 강성을 갖는 완전복합신소재 바닥판께와 비교하였을 때 감소될 수 있었다.
This paper presents the flexural behavior of a hybrid Glass Fiber-Reinforced Polymer(GFRP)-steel decks for use in deteriorated bridge decks replacement. Static load tests were conducted to investigate the structural characteristics of the hybrid FRP-steel deck. The tested deck panel satisfied the design criteria. The failure mode of the hybrid deck was demonstrated ductility with deformation beyond initial yielding. The responses were compared with the ANSYS finite element predictions. It was found that the presented hybrid deck was efficient for use in bridges. The thickness of the hybrid deck may be decreased when compared to that of the all FRP deck with similar flexural rigidity.
본 연구에서는 노후교량 바닥판 대체용으로 단품(Modular) GFRP 바닥판 구조에 대한 거동분석을 실험을 통행 실시 하였다. 그 바닥판의 성능평가로서 축소모형(1/5)의 시험편 3개에 대한 실험적 연구를 수행하였다. 시험편은 박스튜 브를 갖는 샌드위치 판이다. 교량바닥판의 구성재료는 유리섬유와 에폭시 레진이다. 모든 시험편에 대한 실험결과 로서 최대강도, 강성 및 변형능력으로 나타내었다. 실험적 결과의 타당성을 검증하기 위해 유한요소해석을 하여 비 교하였다.
강바닥판 포장에 사용될 수 있는 특수아스팔트 중의 하나인 구스아스팔트는 의 고온 상태에서 시공되기 때문에 강바닥판에 예상하지 못한 열응력 및 열변형을 발생시킬 수 있다. 따라서 구스아스팔트의 타설 중에 강바닥판에 미치는 열영향을 시공조건을 고려하여 사전에 평가하고 그 영향의 최소화를 위해서는 열전달 및 열응력 수치해석을 실시하여야 하지만 구조해석에서 주로 사용되는 평판/보요소의 특성상 3차원 구조해석 모델에서 구현하기가 매우 어렵다. 본 연구에서는 강바닥판 교량의 열영향해석을 위하여 일반적인 구조해석모델에 직접 적용할 수 있는 등가열원(EHS) 산정방법을 제안하였다. 강바닥판 교량의 구스아스팔트에 의한 열영향을 정확히 평가하기 위하여 (1) 기존의 실험결과를 이용하여 열전달해석에 필요한 물리량을 검증하고, (2) 정밀해석을 통해 3차원 교량모델에 적합한 등가열원을 산정하였으며, (3) 이를 해석모델에 적용하여 산정한 등가열원에 의한 수치해석방법의 타당성을 검증하였다. 본 연구에서 제안된 등가열원은 실제 강교량의 3차원 열전달 및 열응력 해석에 즉각 활용될 수 있으며, 등가열원산정기법은 용접잔류응력해석, 교량의 화재 해석 등 열영향을 받는 다른 공학적 해석에 응용될 수 있을 것으로 기대된다.
강바닥판 피로손상을 억제할 수 있는 유효한 방법의 하나로 데크 플레이트의 판 두께를 증가시키거나 세로리브의 보강 등에 의한 강성 증가를 고려할 수 있는데, 이 강성증가는 일반적으로 윤하중에 의한 강바닥판의 국부변형 억제 등에 효과가 있을 것으로 판단된다. 따라서 본 연구에서는 강바닥판교의 피로균열이 빈번히 발생해 가장 문제가 되는 U-rib와 가로리브 연결 상세부의 발생응력을 최소화할 수 있도록 벌크헤드플레이트나 수직리브와 같은 보강상세의 부착에 따른 변수로 정밀 구조해석을 수행하였다. 그 결과, 벌크헤드플레이트는 전체적으로 연결 상세부의 주응력을 경감시키나, 피로균열이 발생되는 용접 지단부에서는 오히려 응력집중이 커지는 경향을 나타내는 것을 알 수 있었다. 그러나 수직리브는 용접 지단부에서 응력집중을 경감시키는 효과를 나타내어 벌크헤드플레이트의 보강보다는 수직리브의 보강이 더 효율적일 것으로 판단된다.