도시의 확장 및 광역화로 지상에서의 물리적인 도로 공급 및 확대는 현실적으로 어려운 상황에 직면하였으며, 이를 해결하기 위한 정책의 일환으로 경부고속도로 지하화 사업으로 대표되는 고속도로 지하화 사업이 추진되고 있다. 지하공간을 이용한 도로의 입체적 확장은 새로운 도로 공급용지의 공간적 확대뿐 아니라 지상도로의 교통량 분산으로 교통정체 완화, 차량으로 인한 소음 및 대기오염 문제 완화 등 도로교통체계의 효율성 및 문제점을 개선할 것으로 판단된다. 그러나 현재까지는 지하도로의 설계 및 시공 관련 기술을 위주로 개발 및 적용되고 있어, 운영 및 안전관리에 필수적인 지하고속도로 교통류 관리에 관한 연구는 이론적 수준에 머물고 있는 한계가 상존한 상황에 있다. 이에 본 연구는 지하고속도로 안전 향상을 위한 사고 예방 및 대응 기술 개발의 전단계로 유고 상황에 대응하기 위한 교통관리 개념을 유고 상황에 따라 변화되는 혼잡 지속시간을 추정할 수 있는 교통류 진단과 지하고속도로 내 유고 발 생 후 교통류 혼잡 회복 및 상태 안전화로 나누어 제안하였다. 이를 기반으로 향후 추진될 기술 개발의 단계를 교통류 변동 지표 개 발, 교통류 진단 알고리즘 개발, 교통류 해석ㆍ추정 알고리즘 개발, 교통관리 현장 적용 및 검증의 4단계로 기술 개발 로드맵을 제시 하였다. 본 연구의 결과는 향후 추진되는 K-지하고속도로 안전 확보를 위한 사고 예방 및 대응 기술 개발에 대한 실효성 및 신뢰성을 높이는데 기여할 것으로 사료된다.
고속도로의 제한속도는 교통류, 운행 시간, 에너지 소비, 교통사고 발생률 등에 직접적인 영향을 미치는 중요한 요인이다. 제한속도 의 상향 조정은 운행 시간 단축과 경제적 이점을 가져올 수 있지만, 교통사고 위험성을 높일 수 있으며, 반대로 하향 조정은 사고율을 감소시킬 수 있으나 운행 시간 증가와 교통 혼잡을 초래할 수 있다. 이러한 상반된 영향으로 인해 제한속도 조정이 도로 안전성과 효 율성에 미치는 구체적인 변화를 분석하는 연구가 필요하다. 본 연구는 미시교통시뮬레이션 도구인 VISSIM과 SSAM을 활용하여 제한 속도 및 교통량 변화에 따른 고속도로 구간별 상충횟수를 분석하고, 위험성이 높아지는 구간을 식별하였다. 이를 통해 향후 단속지점 설정과 구간별 맞춤형 개선방안 마련에 실증적인 근거를 제공하고자 한다.
고속도로에 적용되고 있는 소음저감대책 현황을 고찰하기 위해서 고속도로 건설 전 수행해야 하는 환경영향평가서와 고속도로 완공 후 소음기준 초과 소음에 대한 소음영향분석보고서를 검토하였다. 환경영향평가서는 시기별로 수립되는 방음대책이 변화하였다. 2013 년 전까지는 방음벽(흡음형, 반사형) 위주의 방음대책이 수립되었다. 그러나 2015년 이후 방음벽 이외의 배수성저소음포장과 소음감쇠 기를 저감방안으로 제시하였다. 그러나 보고서마다 소음저감효과가 서술되어 있거난 서술되어 있지 않았다. 환경영향평가 이후 신규소 음저감대책이 수록된 소음영향분석보고서에서 최근 5년간 보고서 일부를 중심으로 검토하였다. 소음대책 수립을 위해서 20년 후 장래 교통량을 이용하여 방음벽 신설, 방음터널, 소음감쇠기, 배수성저소음포장 등의 소음저감대책을 수립하였으며 방음벽과 배수성저소음 포장을 조합한 대책안이 많이 제시되었다.
In South Korea, the level of Highway Pavement Management System (HPMS) was developed since early 2000. During this time numbers of professional pavement condition monitoring equipment were developed and applied in the actual field. One of the remarkable results is 3D Pavement condition Monitoring profiler vehicle (3DPM) designed and developed in Korea Expressway Corporation Research Division (KECRD). Thanks to this equipment, The surface condition of current pavement can successfully be monitored and proper following management strategy cab be established. However, the inner condition of pavement layer cannot be monitored dur to limitation of 3DPM equipment. In this paper, Bending Beam Rheometer (BBR) mixture creep test was performed to verify the effectiveness of current 3DPM equipment. It was found that the current 3DPM equipment has reasonable feasibility on surveying pavement condition.
Evaluation of low temperature performance of asphalt mixture is significant not only for mitigating transverse thermal cracking but also for preventing potential traffic accidents. In addition, the engineers in pavement agency need to inform the proper pavement section where urgent management is needed. Since early 2000, Korea Expressway Corporation Research Division (KECRD) developed an 3D Pavement condition Monitoring profiler vehicle (3DPM) to survey expressway pavement surface condition precisely. The management of whole expressway network became more precise, effective and efficient than before due to application of 3DPM and HPMS. One thing recommended is: performing extensive mechanical test and corresponding data analysis work procedure to further strengthen the feasibility of current 3DPM approach and HPMS. In this paper two activities were considered: first, the pavement section where the urgent care is recommended is selected by means of 3DPM approach. Then asphalt mixture cores were acquired on that specified section then low temperature fracture test: Semi Circular Bending (SCB) test, was performed. The mechanical parameters, energy release rate and fracture toughness were computed then compared. It is concluded that the current 3DPM approach in KEC can successfully evaluate and analyze selected pavement condition. However, more extensive experimental works are needed to further strengthen the current pavement analyzing approaches.
The public safety management guidelines were introduced in 2019 and continue to be dedicated to advancing comprehensive measures for public safety management, with a primary focus on prioritizing the safety and well-being of the public within governmental institutions. To achieve this goal, our previous study developed a establishment procedure of risk assessment-based safety inspection system for public institutions that order construction projects and applied it to highway construction projects to evaluate its effectiveness. To enhance the practicality of the establishment procedure, it is essential to collect and analyze feedback from stakeholders regarding its performance and suitability. This study conducted a survey involving 200 participants who had experience with the establishment procedure, and performed statistical analyses to evaluate its performance and applicability. The survey results indicated that the participants reported a high level of satisfaction (scoring 4 and above on a 5-point Likert scale) in several areas: specialization of safety inspection items for different types of work (with a satisfaction rate of 65%), the evaluation process for safety ratings (64.5%), and their willingness to recommend the procedure to other institutions (75.5%). In the factor analysis with Varimax rotation, two factors emerged: (1) a specialization factor related to safety inspection items, and (2) a grading factor associated with safety evaluation results. Regression analyses of these factors unveiled significant positive relationships with improvements in safety and health performance, including the prevention of fatal accidents, heightened safety responsibility, and raised safety inspection standards. The establishment procedure of safety inspection system developed in our previous study can play a crucial role in reducing accidents resulting in fatalities and injuries at construction sites, ultimately contributing to a safer working environment for all involved parties.
PURPOSES : The evaluation of the low-temperature performance of an asphalt mixture is crucial for mitigating transverse thermal cracking and preventing traffic accidents on expressways. Engineers in pavement agencies must identify and verify the pavement sections that require urgent management. In early 2000, the research division of the Korea Expressway Corporation developed a three-dimensional (3D) pavement condition monitoring profiler vehicle (3DPM) and an advanced infographic (AIG) highway pavement management system computer program. Owing to these efforts, the management of the entire expressway network has become more precise, effective, and efficient. However, current 3DPM and AIG technologies focus only on the pavement surface and not on the entire pavement layer. Over the years, along with monitoring, further strengthening and verification of the feasibility of current 3DPM and AIG technologies by performing extensive mechanical tests and data analyses have been recommended. METHODS : First, the pavement section that required urgent care was selected using the 3DPM and AIG approaches. Second, asphalt mixture cores were acquired from the specified section, and a low-temperature fracture test, semi- circular bending (SCB) test, was performed. The mechanical parameters, energy-release rate, and fracture toughness were computed and compared. RESULTS : As expected, the asphalt mixture cores acquired from the specified pavement section ( poor condition – bad section) exhibited negative fracture performances compared to the control section (good section). CONCLUSIONS : The current 3DPM and AIG approaches in KEC can successfully evaluate and analyze selected pavement conditions. However, more extensive experimental studies and mathematical analyses are required to further strengthen and upgrade current pavement analysis approaches.
PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
국내의 공공공사는 국가・지방자치단체・정부 기관이 건축주가 되어 시행하거 나 지방자치단체의 보조로 시행하는 공공 토목건축 공사를 말한다. 이러한 공 공공사는 「국가를 당사자로 하는 계약에 관한 법률」로써 계약에 관한 기본적 인 사항을 정하여 원활한 계약업무를 수행할 수 있도록 하고 있다. 한편 공공 공사 수행을 위해서는 용지가 필요한 바 「공익사업을 위한 토지 등의 취득 및 보상에 관한 법률」에 공사용지 확보는 사업시행자가 하도록 명시하고 있고, 공 사계약일반조건에서도 공사용지 확보와 관련하여 발주기관은 계약상대자가 공사의 수행에 필요로 하는 날까지 공사용지를 확보하여 계약상대자에게 인도 하도록 규정하고 있다 그러나 실제 고속도로 공사현장에서는 공사용지 확보가 공사수행을 위해 필요 한 날까지 제대로 이루어지지 않는 경우가 많아 준공기한 준수를 위해 돌관공 사가 빈번하게 이루어지는 등 현실적인 어려움이 자주 발생하고 있다. 따라서, 본고에서는 관계법령 및 공사계약일반조건에서 규정한 공사용지 확보 관련규정에 대한 문제점을 제시하고 이에 대한 개선안을 제시함으로써 향후 공공공사를 시행함에 있어 공사용지 확보와 관련하여 발주기관 및 계약상대자 가 겪는 어려움을 해소하는데 일조하고자 한다.
PURPOSES : The purpose of this study is to perform traffic flow characteristics analysis for each point of the long-term work zones and to propose an estimated capacity method to support the establishment of traffic flow management strategies for the long-term work zones.
METHODS : The study explained the difference in traffic flow characteristics between the short-term and the long-term work zones, and estimated the capacity of the long-term work zones. The analysis data were collected from five points of long-term work zones of the twolane highway. And VDS and DSRC data were applied to validate data.
RESULTS : The characteristics of traffic flow at each measurement point in the long-term work zones showed some differences, among which the capacity was estimated as the starting point to be 1,200 pcphpl and the ending point, 1,400 pcphpl. The delay length was estimated by applying the queuing theory based on the capacity of the start point where the bottleneck starts. As a result of verifying the congestion length based on space diagram map analysis, it was determined that the capacity calculation value and estimation methodology presented in this study were appropriate.
CONCLUSIONS : The long-term work zones are mixed with different characteristics of roads, so as the capacity values depending on the analysis location. Therefore, it is necessary to select analysis points and methodologies for estimating capacity and delay depending on the purpose of the analysis, such as estimating the maximum queue length or analyzing the maximum travel time. Through this study, it is expected that by providing accurate information on congestion in advance, road users can detour to other roads, and construction officials can adjust the construction plan to minimize congestion in the construction section.
PURPOSES : In this study, the installation of drowsy rest areas and accidents are analyzed. The factors that affected the accidents caused by drowsy drivers in rest areas are analyzed to improve the safety of rest areas.
METHODS : By comparing and analyzing the installation status of the rest areas for drowsy drivers, the accident status were analyzed. The logistic regression model was used to analyze the factors that affect accidents in the drowsy rest area.
RESULTS : Most rest areas were installed below the installation criteria. Several accidents occurred when the vehicle entered the drowsy rest area. These rest areas had a short entry ramp, and no safety facilities were installed. The logistic regression model showed that the risk of an accident is lowered when the deceleration lane is longer than 215 m. Additionally, the risk of an accident is lowered when the rest area is installed in the straight section or the curve section, wherein the curve radius is greater than 2 km.
CONCLUSIONS : In this study, we evaluated the installation status of the rest areas for drowsy drivers by comparing installation elements. Most rest areas for drowsy drivers were installed at different lengths of the ramp. Some of these were installed on the slope or curved sections of the road. We analyzed the accident status and developed an accident modal using the logistic regression model to identify the factors that affect accidents. It will be necessary to analyze accidents in drowsy rest areas continuously to improve safety for drowsy drivers.
PURPOSES: The purpose of this study is to compare the lane curing time of natural drying and a lane drying device when painting lines on a highway.
METHODS: The painting process was carried out in July 2015 and September 2015, respectively, for the Gimcheon IC - Gimcheon JC. After the painting, measurements were obtained three times at six measurement points located at 20 m intervals on the shoulder line and the dividing line. The curing time was measured for natural drying and drying using a lane drying device, and compared for different pavement types (asphalt, concrete) and paint types (waterborne paint, methyl methacrylate paint).
RESULTS : The results of the lane curing time comparison on the highway are as follows. The combination of asphalt and methyl methacrylate paint cured more rapidly during both the natural drying and drying using the lane drying device. Finally, it was cured at least 32.2% and 40.7% faster when using a drying device than in natural drying.
CONCLUSIONS: The comparison of lane curing time of the highway showed that the combination of asphalt and methyl methacrylate paint cured more rapidly when using both natural drying and a lane drying device.