에너지 저장 장치의 필수 요소인 리튬에 대한 필요성이 증가함에 따라 전 세계 리튬 침전물의 주요 공급원인 염 수로부터 효율적인 리튬 회수 방법의 개발이 요구됩니다. 염수로부터 리튬을 회수하는 과정은 유사한 특성을 가진 공존하는 이온의 존재로 인해 복잡합니다. 크라운 에테르 기능화된 막은 선택적 리튬 회수를 위한 유망한 솔루션을 제시합니다. 이온- 쌍극자 상호 작용을 통한 금속 이온에 대한 강한 친화력으로 유명한 크라운 에테르는 공동-이온 크기 호환성에 기반한 리튬 이온의 선택적 추출을 촉진하는 “호스트-게스트” 복합체를 형성합니다. 다양한 연구에서 크라운 에테르 이식된 막이 리튬 선 택성을 향상시키는 데 효과가 있음이 입증되었습니다. 이 리뷰는 크라운 에테르 기능화된 막의 발전을 탐구하여 염수로부터 의 리튬 회수 문제를 해결할 수 있는 잠재력을 보여줍니다.
환경오염을 제어하기 위한 청정에너지에 대한 수요 증가는 빠르게 증가하고 있습니다. 리튬 이온 배터리와 같은 충전식 배터리는 청정에너지의 우수한 원천이지만 높은 수요와 공급 불일치로 인해 리튬 금속이 빠르게 고갈되고 있습니다. 배터리 폐기물에서 귀금속을 회수하는 것은 환경오염 제어와 함께 가능한 해결책 중 하나입니다. 멤브레인 기반 분리 방법은 폐기물에서 리튬을 회수할 수 있는 매우 성공적인 상업적 공정입니다. 이 작업은 최근에 보고된 다양한 방법을 다룰 것이며 검토 형식으로 작성될 것입니다.
수산화리튬(LiOH)에 대한 수요는 현재의 대안들에 비해 환경에 대한 효율성과 안전성 때문에 매년 증가하고 있 다. 리튬은 다른 염분과 염수 호수에서 발견될 수 있으며, 나중에 합성되어 다양한 용도로 LiOH를 생성한다. 리튬 이온을 분 리 및 회수하기 위해 다양한 방법이 사용되며, 그 중 가장 일반적인 방법은 전기투석법(ED)이다. ED는 이온을 한쪽에서 다 른 쪽으로 밀어내는 구동력으로서 그 층의 전위차에 작용하는 멤브레인 기반 분리 기술이다. ED의 이온교환막(IEM)은 유체 역학적 부피에 따라 상이한 이온의 선택성이 달라지기 때문에 공정을 효율적으로 만든다. 본 총설에서는 리튬이온의 회수를 향상시키기 위한 ED와 IEM의 서로 다른 변화 전략이 논의된다.
리튬 이온 배터리(LIB) 수요는 화석 연료에 대한 부담을 줄이기 위해 전 세계적으로 매년 증가하고 있다. LIB는 전기 자동차, 고정식 저장 시스템 및 기타 다양한 응용 분야에 사용된다. 리튬은 해수, 염수, 염호에서 구할 수 있으며 환경 친화적이고 저렴한 방법으로 추출하면 리튬 채굴의 부담을 크게 줄일 수 있다. 주로 나노여과(NF)와 같은 막 분리 공정은 용액에서 리튬 금속을 분리하는 효과적인 방법이다. 전기투석 및 전기 분해는 리튬 분리에 사용되는 다른 분리 공정이다. 역삼 투압(RO) 공정은 이미 해수 담수화를 위한 잘 정립된 방법이다. 따라서, 리튬 금속을 목적으로 사용되는 개질된 RO 분리막은 용액속에 존재하는 다른 금속 원소의 간섭에 의한 문제를 해결할 수 있는 좋은 대안 방법이다. 적합한 NF 막을 찾거나 개발하여 리튬을 선택적으로 제거하는 것은 도전적일 수 있지만 흥미로운 연구 영역이다. 이 총설에서는 나노여과, 전기투석, 전기분해 및 기타 공정을 이용한 리튬 회수에 대해 자세히 설명한다.
Synthesis of Li+-selective 14-crown ether (CE) having rigid and bulky subunits was reported. CE-poly(vinyl alcohol) (PVA) dope solutions were electrospun. CEs were immobilized on PVA matrix via acid-catalyzed acetalization using novel aerosol method. Structures of new compounds and their immobilization to PVA were confirmed and characterized. Adsorption experiments show superior lithium capacity and selectivity among previously reported solid-supported CEs. Dihydroxy-dibenzo-14-crown-4 ether-PVA nanofiber membrane showed superior performance. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2015R1A2A1A15055407) and Ministry of Education (2009-0093816).
Synthesis of Li+-selective 14-crown ether (CE) having rigid and bulky subunits was reported. CE-poly(vinyl alcohol) (PVA) dope solutions were electrospun. CEs were immobilized on PVA matrix via acid-catalyzed acetalization using novel aerosol method. Structures of new compounds and their immobilization to PVA were confirmed and characterized. Adsorption experiments show superior lithium capacity and selectivity among previously reported solid-supported CEs. Dihydroxy-dibenzo-14-crown-4 ether-PVA nanofiber membrane showed superior performance. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015R1A2A1A15055407) and by the Ministry of Education (No. 2009-0093816).
The electrochemical properties of cells assembled with the LiNiO2 (LNO) recycled from cathode materialsof waste lithium secondary batteries (Li[Ni,Co,Mn]O2), were evaluated in this study. The leaching, neutralization andsolvent extraction process were applied to produce high-purity NiSO4 solution from waste lithium secondary batteries.High-purity NiO powder was then fabricated by the heat-treatment and mixing of the NiSO4 solution and H2C2O4.Finally, LiNiO2 as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixingof the NiO and Li2CO3 powders. We assembled the cells using the LiNiO2 powders and evaluated the electrochemicalproperties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary bat-tery using the processes applied in this work.
Cathode materials and their precursors are prepared with transition metal solutions recycled from the thewaste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a H2 and C-reduction process. Therecycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the tran-sition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxideby calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathodematerial has a layered structure and particle size of about 10 µm. The cathode materials also exhibited a capacity ofabout 160 mAh/g with a retention rate of 93~96% after 100 cycles.
In order to recover lithium ions from aqueous solution, a novel SAN-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with styrene acrylonitrile copolymers (SAN). The optimum condition for synthesis of SAN-LMO beads was 5 g of LMO and 3 g of SAN content. The characterization of the prepared SAN-LMO beads by SEM and XRD were confirmed that LMO was immobilized in SAN-LMO beads. The removal and the distribution coefficient of lithium ions decreased with increasing lithium ion concentration and solution pH. Even when the prepared SAN-LMO beads were reused 5 times, the leakage of LMO and the damage of SAN-LMO beads was not observed.
최근 휴대전화와 노트북 PC등 휴대전자기기의 보급과 함께 이온전지의 수요가 해마다 늘어나고 있고, 특히 개인용 휴대장비의 발달과 함께 동력원으로 사용되고 있는 이온전지의 기술이 빠르게 발전하여 왔다. 현재 국내에서 상용되고 있는 리튬이온전지(Lithium Ion Battery)는 거의 대부분 사용 후 폐기되고 있는 실정이며, 대기업 중심의 소형 리튬이온전지 양산에 주력해 현재 세계 2위 수준으로 성장하였지만, 여전히 소재와 부품은 상당 부분 수입에 의존하고 있어 상대적으로 산업기반이 취약한 실정이다. 국내에서도 폐전지 재활용을 통하여 전략 광물인 코발트(Co), 망간, 아연, 니켈 등을 국내에서 원료로 확보 가능하며, 폐전지로 인한 환경오염문제를 해결함으로써 전지 산업의 활성화와 더불어 국내 제조 산업의 경쟁력을 향상할 필요성이 대두되고 있다. 이에 본 연구에서는 폐리튬이온전지로부터 코발트(Co)회수 기술개발 및 회수효율 향상을 위하여 공정장비를 제작/최적화 하고, 물리적 처리공정 기술개발을 통한 회수율 향상 및 화학적 처리공정을 통한 최적의 코발트 추출 기술을 도출하였다. 또한 이러한 추출된 코발트(Co)를 이용한 재생 Battery를 제작, 리튬이온전지 평가(Full cell&Coin Cell) 및 인증기관평가(KOLAS)를 통한 검증 과정도 진행하였다. 그 결과 폐이온전지의 물리적 파쇄 공정 기술 및 파쇄기 제작, 추출/회수를 위한 최적의 화학적 처리공정 확립, 폐코발트를 활용한 리튬이온전지 제조기술을 확보하였다. 현재 첨단 소재산업 및 녹색 성장 소재산업에서 희유금속의 수요가 급증할 것으로 예상되며, 이러한 연구개발을 통하여 경제적 효과는 물론, 원료 확보도 가능할 것으로 기대된다.
리튬은 주기율표상의 가장 가벼운 금속으로 산업, 에너지 및 약품 등 다방면에서 경제에 중요한 역할을 담당하고 있다. 이런 리튬은 자연 상 지질매체(암석)와 물에 흔히 존재하는데 많은 화성암, 변성암 및 퇴적암 그리고 해수, 호수, 온천수 및 지하수에 다양한 농도로 나타난다. 리튬은 지각의 암석 속에는 대체로 32 ~ 65 ppm, 해수(대양)에는 0.17 ~ 0.2 ppm 그리고 고농도로 농축된 염호(Brine Lake)나 염지하수(Brine Groundwater)의 경우에는 200 ~ 400 ppm의 농도를 보인다. 매장량으로 보았을 때 전 세계 리튬의 55 ~ 60%가 염호(염지하수 포함)에 부존하고 있다. 리튬탄광은 페그마타이트 광상으로, 페그마타이트 광상의 주요 구성성분은 Amblygonite[(Li,Na)Al(PO4)(F,OH)], Eucryptite[LiAlSiO4], Lepidolite[K(Li,Al)3(Si,Al)4O10(F,OH)2, Petalite[Li2O․Al2O3․8SiO2, LiAlSi4O10], Spodumene[Li2O․Al2O3․4SiO2, LiAlSi2O6] 광물들로 구성되며, 페그마타이트 광상으로부터 리튬의 회수는 호주, 브라질, 짐바브웨 등에서는 주로 노천채굴로 이루어지나 중국 및 캐나다는 갱내채굴로 이루어지고 있다. 상업적으로 채굴 가능한 리튬은 410만톤 정도로 향후 7 ~ 8년 내에 고갈될 전망이다. 한편 남미의 리튬은 거의 대부분 염수 추출인데 고지대 증발암을 근원으로 전 세계 리튬 생산량의 72%가 염수에서 추출한 것이다. 리튬 추출기술은 추출원에 따라 (1) 광석, (2) 염호, (3) Clay, 및 (4) 리튬 함유 폐자원에서 추출하는 기술로 분류할 수 있다. 추출기술별로 다양한 법을 사용하지만 전반적인 화학적 메카니즘은 광석 추출기술과 염호추출기술이 대표적이다. 광석추출기술의 경우 광맥에서 채굴한 원석을 부유선광하고 석영질, 운모질을 제거하여 Li2O 1.5% 품위의 광석을 5 - 6%로 높인다. 광석분은 화학공장으로 운반되어 사일로에 저장되며, 다음으로 회전로에서 1,100℃로 가열한 후 냉각 킬른을 지나 배출된다. 이 공정에서 스포듀민은 비수용성 α형에서 수용성 β형으로 변화된다. α형은 황산에 의해 분해되는 것이 적으나 β형은 쉽게 황산리튬으로 변된다. 또한 β형은 α형보다도 부서지기 쉬워 볼밀(Ball Mill)로 미분쇄시킨다. 스포듀민 대신으로 페탈라이트를 쓰면 1,100℃에서 페탈라이트가 β스포듀민과 Free Silica로 변화한다.
Li2O·Al2O3·8SiO2 → Li2O·Al2O3·4SiO2 + 4SiO2 (1)
β-스포듀민의 미분에 황산을 이론양보다 약간 많이 혼합하고 황산배소로에서 약 250℃로 가열하면 β-스포듀민 중의 Li2O만이 황산리튬으로 변화한다.
Li2O·Al2O3·4SiO2 + H2SO4 → Li2SO4 + Al2O3·4SiO2 + H2O↑ (2)
물과 섞어 황산리튬용액으로 한 후 과잉의 황산은 석회로 중화시켜 생긴 석고는 알루미나, 실리카와 같이 여과 제거한다. 이를 정액한 후 소다회의 포화용액과 반응시키면 탄산리튬이 침전된다.
Li2SO4 + Na2CO3 → Li2CO3↓ + Na2SO4 (3)
한편, 염호 중의 리튬은 통상 염화리튬의 형태로 함유되어 있으며, 리튬함유량 평균이 300 ppm (200-1,700)으로 태양열을 이용해 증발 못에서 0.6%(20배)로 농축한다. 증발 도중에 암염과 NaCl과 KCl의 복합물이 정출된 다음 석회를 첨가해 마그네슘이 수산화물로 침전된다. 최종적으로 소다회를 넣어 리튬을 탄산리튬으로 회수한다. 본고에서는 리튬 추출공정별 메카니즘을 비교 평가를 통해 석탄회로부터 리튬을 추출하는 공정을 최적화