The objective of this research was to estimate the greenhouse gas (GHG) emission factors for food, paper, and wood wastes through methane (CH4) flow analysis. The GHG emissions from a given amount of landfill waste depend on the carbon (C) flows in the waste: (1) carbon storage in landfills, (2) C in carbon dioxide (CO2) and CH4 generated in anaerobic waste decomposition, (3) C in CO2 and CH4 emitted to the atmosphere through vertical gas wells, (4) C in CO2 from CH4 oxidation through cover soils, and (5) C in CH4 emitted to the atmosphere through cover soils. This study reviews the literature on the ranges for DOCf (the fraction of degradable organic carbon that can decompose) and OX (oxidation factor) values of food, paper, and wood, with a particular focus on the role of lignin. There is an inverse relationship between lignin and the DOCf of paper and wood wastes. In this respect, the lignin content could be used as an abatement indicator for the DOCf of paper and wood. The literature review shows that the average DOCf values for food, paper, and wood were 0.72, 0.61, and 0.12, respectively. The country-specific DOCf value for wood (0.44) is significantly higher than the ranges reported in the literature, which implies that the country-specific DOCf for wood can overestimate GHG emissions compared to the DOCf obtained from the literature. The estimated GHG emissions factors were 1,055 kg-CO2e/ ton-wet waste for food, 1,367 kg-CO2e/ton-wet waste for paper, and 276 kg-CO2e/ton-wet waste for wood. Sensitivity analysis results showed that the most influential parameters were MCF (CH4 correction factor), DOCf, and OX. In order to reduce GHG emissions from landfill in Korea, landfill sites currently in operation should be converted from anaerobic to semi-aerobic.
폐기물매립지에서 온실가스 발생량 예측을 위하여 사용되는 1차 반응모델(First-order decay, FOD)에 적용되는 중요한 변수 중 하나는 메탄발생잠재량(Methane generation potential, L0)이다. L0는 메탄생성에 가장 이상적인 조건에서 폐기물 중량단위 당 발생할 수 있는 메탄의 양으로 일반적으로 메탄수율이라고 나타내기도 한다. 그러나 폐기물매립지에서의 L0는 매립지 내부의 수분, 온도 등의 환경적 조건과 폐기물 크기 등의 물리적 특성에 의해 메탄발생이 영향을 받기 때문에 일반적으로 정의되는 L0와 혼동을 나타낼 수 있다. 이러한 물리적 및 환경적 요인 때문에 폐기물매립지에서의 L0는 실내실험 결과보다 낮게 나타나며, 따라서 폐기물매립지에서의 사용되는 L0 용어에 대한 기본적 가정은 메탄발생을 위한 이상적 조건이 아닌 실제 매립지 조건으로 고려되어야 한다. 이에 본 연구에서는 앞에서 나타낸 용어의 정의를 기준으로 기존 연구문헌에서 폐기물매립지의 L0산정을 위해 적용한 방법들을 고찰하여 향후 L0 산정 및 방법론 개발에 기초자료로 활용되고자 하였다. L0 산정방법을 크게 구분하면 화학양론적 방법(Stoichiometric method), 실내실험 방법, 모델일치(Model fitting) 및 회귀분석, IPCC(Intergovernmental panel on climate change) 방법론으로 구분할 수 있다. 화학양론적 방법은 폐기물의 원소조성에 기초한 Buswell 식 또는 폐기물의 탄수화물(Carbohydrates), 단백질(Proteins), 지질(Lipid)의 함량에 기초하여 이론적인 L0값을 산정 후 생분해가능 비율(Biodegradable portion, BF)을 곱하여 L0값을 계산할 수 있으나 BF 산정에 어려움이 있다. 실내실험은 일반적으로 폐기물 성상별 L0에 폐기물 조성 가중치를 적용하여 L0값을 산정하고 있다. 성상별 L0값을 산정하기 위해서는 일반적으로 BMP(Biochemical methane potential) 실험이 사용되나 BMP 결과를 L0로 나타내기에는 문제점이 있다. 이는 BMP 결과는 혐기성 분해의 이상적 조건에서 도출되었기 때문에 L0 보다는 DOC(Degradable organic carbon)와 의미가 매우 유사하며, 모의매립조(Lysimeter) 또는 현장 실험보다 높은 값을 나타내기 때문에 조정계수를 적용하여 L0값을 산정하여야 한다. 모의매립조 실험의 경우에는 수리전도도(Hydraulic conductivity)와 연관되어 실제 매립지보다 짧은 수리학적 체류시간을 가지게 되는 문제점이 있다. 이는 매립지에서 침출수로 유출되는 DOC 비율은 2% 미만으로 보고되고 있으나 모의매립조는 상당비율의 DOC가 침출수로 유출되기 때문에 L0 산정 시 침출수로 유출되는 DOC비율을 고려하여야 한다. 모델 일치 및 회귀분석은 실제 매립지에서의 측정 데이터를 기초하기 때문에 가장 정확하나 데이터 확보를 위한 장기간의 시간이 소요된다. IPCC 방법론의 경우 DOC 및 DOCf를 산정하여 L0를 산정할 수 있으며, DOC 산정을 위해서는 BMP 실험을 이용한 방법과 폐기물의 방사성 탄소함유량(Radiocarbon content)에 기초한 생물학적 기원 탄소량 산정방법이 있다. DOCf는 셀룰로오스(Cellulose)와 헤미셀룰로오스(Hemi-cellulose)가 전부 메탄으로 전환된다는 가정 하에 측정된 메탄수율로 나누어 계산할 수 있다.
Because methane-producing bacteria (MPB) and sulfate-reducing bacteria (SRB) compete for anaerobic utilization of organic matter, the methane generation potential (Lo) decreases logarithmically with the decrease in the COD/SO4 ratio. The Lo correction coefficient equals the Lo at a particular COD/SO4 ratio divided by the maximum Lo. An Lo correction coefficient was derived each year based on the COD/SO4 ratios of waste added to the landfill. The methane generation potential was multiplied by the Lo correction coefficient in order to correct the LFG (landfill gas) generation calculation. At the second Sudokwon landfill site (2000 ~ present), the COD/SO4 ratio decreased from 11.6 in 2000 to 4.8 in 2014. Thus, the Lo correction coefficient decreased from 0.89 in 2000 to 0.42 in 2014. The LFG 2008-2014 production correction was calculated using the model equation (Scholl canyon), and was almost the same (91 ~ 113%) as the quantity measured, including LFG that was collected, flared, or allowed to diffuse through the landfill. The methane oxidation correction factor, calculated from the concentrations of nitrogen and oxygen within the landfill gas, was between 0.92 and 1 for the first landfill site and between 0.96 and 1 for the second landfill site. Air ingress into the landfill had a negligible effect on gas generation.
Sulfate produced during anaerobic reduction limits the activity of methanogens but it is not reflected in the Intergovernmental Panel on Climate Change (IPCC) methodology for estimating CH4 emissions. In this study, CH4 emissions from the Sudokwon landfill site were estimated by adopting a methane correction factor, which was determined through the relationship between the COD/sulfate ratio and CH4 generation. Although the gas originating from the Sudokwon landfill site has not produced any environmental problems in recent years due to gas collection and soil cover maintenance activities, CH4 emissions estimated by the IPCC methodology indicated that only 60% of the CH4 was recovered and the remainder was emitted into the atmosphere, suggesting a potential environmental problem. Accordingly, CH4 estimates determined according to IPCC methodology must be modified by adopting the methane correction factor and considering the effect of sulfate concentration.
폐기물매립지는 대기 중으로 배출되는 인위적인 메탄 배출량의 상당 비율을 차지하고 있으며, 메탄은 기후변화에 상당부분 기여하는 물질 중 하나로 잘 알려져 있다. 이에 폐기물매립지에서 발생되는 온실가스로 인한 주변 환경오염 저감과 온실가스 관리 등을 위해서는 먼저 정확한 온실가스 배출량 산정이 필요하다. 그러나 폐기물매립지에 매립되는 폐기물의 불균질성과 매립된 폐기물의 분해에 관여하는 인자가 많기 때문에 장기간에 걸쳐 물리화학적 및 생물학적 반응을 통해 발생되는 온실가스의 배출량을 정확히 측정한다는 것은 매우 어렵다. 지금까지 폐기물매립지에서의 온실가스 발생량 예측을 위하여 다양한 모델들이 제안되었는데, 대부분의 모델은 1차 반응모델(First-order decay, FOD)에 기초하고 있다. 1차 반응모델로 가장 대표적인 모델은 IPCC(Intergovernmental panel on climate change)에서 제시한 FOD 모델과 미국 EPA(Environmental protection agency)에서 개발한 LandGEM(Landfill gas emissions estimation model) 등이다. 1차 반응모델에 적용되는 모델 변수들은 일반적으로 2006 IPCC 가이드라인에서 제시하고 있는 기본값을 적용하고 있으나 모델 변수는 온실가스 배출량 산정의 정확성에 결정적 영향을 미치기 때문에 폐기물매립지에서 모델을 이용한 온실가스 배출량 산정 결과의 신뢰도를 향상시키기 위해서 해당 매립지 특성에 맞는 변수값을 산정할 수 있는 방법론이 우선적으로 개발되어야 한다. 이에 본 연구에서는 장기간 동안 S 폐기물매립지에서 발생하는 온실가스를 측정한 결과를 기초로 메탄 및 탄소 물질수지를 이용하여 1차 반응 모델의 주요 변수인 DOC(Degradable organic carbon), DOCf(Fraction of degradable organic carbon which decomposes), R(CH4 recovery efficiency), OX(Oxidation factor), k(CH4 generation rate constant), Lo(CH4 generation potential)를 산정하고 산정된 변수값을 검증하여 온실가스 모델변수 산정방법론을 개발하고자 하였다. 연구결과 BMP(Biochemical methane potential) 실험을 통해 산정된 메탄발생량값은 최적 조건에서 평가된 값이기 때문에 DOCf를 1.0로 가정하였을 경우 DOC를 산정할 수 있는 것으로 나타났다. 또한 본 연구에서 메탄 및 탄소 물질수지를 이용하여 도출된 주요 변수값들을 모델에 적용하여 평가된 온실가스 발생량과 기존에 측정된 온실가스 발생량을 비교하였을 때 매우 유사하게 나타나 탄소물질 수지를 이용하여 1찬 반응모델의 변수들을 매우 정확하게 산정할 수 있는 것으로 나타났다. 이외에도 1g의 폐기물(습윤기준) 중 매립지에 저장되는 DOC는 0.07g으로 분석되었으며, 침출수로 유출되는 DOC 비율은 전체 DOC 중 1.3%로 계산되었다. 따라서 본 연구를 통해 제안된 탄소 물질수지를 이용한 모델 변수 산정 방법은 폐기물매립지 온실가스 모델 적용에서 모델 변수들 및 예측값의 정확성을 향상시킬 수 있게 되었다.
매립지 악취 관리를 위해 매립가스를 적극적으로 포집함에 따라 매립지 내부로 공기가 유입되어 메탄 생성이 저해된다. 본 연구에서는 공기 주입량에 따른 메탄 생성량 변화를 BMP 테스트로 조사하여 매립장 호기화로 인한 매립가스 발생량에 미치는 영향을 파악하고자 한다. 산소 농도 0-10% 조건에서 메탄 생성량 변화를 BMP 테스트로 분석하였다. 반응기를 A, B 그룹으로 나누어 반응 초기에는 모든 반응기에 0-10% 산소를 주입하였고, B 그룹에는 반응 7일째 0-10% 산소를 추가로 주입하였다. 산소 농도가 2%일 경우 산소 0% 경우와 메탄 생성량이 비슷하며 산소 4%, 6%, 8%, 10% 주입시 메탄 생성량이 96%, 74%, 74%, 74%로 감소되었다. 산소를 1회 주입시(반응 0시간) 보다 2회 주입시(반응 0시간, 7일) 메탄 생성량 감소폭이 높았다. 폐기물 COD 대비 산소 주입량 비율(O2/COD(%))이 높아짐에 따라 메탄생성율은 낮아졌다. 폐기물 O2/COD(%) 대비 메탄생성율의 변화를 선형식으로 도출하였다. 산소 주입량 증가에 따른 황화수소 발생량 변화는 상관관계가 없었다. 수도권매립지 1, 2 매립지의 O2/COD(%)에서 메탄생성율 변화를 선형식을 이용하여 계산하였다. 1매립지는 매립이 종료된 2000년까지 메탄생성율 변화가 1 이상으로 산소 유입에 의한 메탄생성율 변화는 미비할 것으로 예측된다. 2000년 매립 종료 후 매립가스 포집량이 감소되면서 유입되는 산소량이 감소되고 있어 메탄가스 생성량 저하는 미비할 것으로 예측된다. 2매립지는 2011년 이후 메탄생성율 변화가 1 미만으로 낮아져 0.92 정도까지 낮아졌다. 이는 폐기물 매립량 감소로 인한 COD 매립량 감소와 매립가스 포집 강화로 인한 공기 유입으로 소모된 산소량 증가로 인한 결과이다. 매립지 호기화로 인한 메탄생성율의 감소는 2011년부터 2014년까지 0.92-0.99 정도로 그 영향을 크지 않을 것으로 예측된다.
현재 개별 매립지의 매립가스 발생량을 추정을 위해 폐기물의 분해를 일차분해반응으로 가정한 수학적 model들인 Scholl Canyon model, Palos Verdes model, Sheldon Arleta model과 IPCC GL 그리고 EPA의 LAEEM(Landfill Air Emissions Estimation Mode) 등이 주로 사용되고 있다. 일차분해 model을 이용한 온실가스 발생량의 추정은 매립된 폐기물의 양 및 조성, 매립시기와 경과시간 등의 기초자료, 폐기물의 메탄최대발생량(L0)와 메탄발생속도계수(k)를 사용되기 때문에 온실가스의 정확한 예측을 위해서는 이들에 대한 보다 적절한 값이 선정되어야 한다. 현재 선진국들은 매립지 특성을 반영한 메탄발생속도상수(k)를 제시하고 있으나 국내에의 경우 이러한 연구가 전무한 상황으로 이에 대한 연구가 필요한 것으로 보인다. 본 연구에서는 현재 사용중인 2곳(H, Y 매립지)의 소규모 매립장에 대한 매립지 특성 자료수집과 현장측정을 통해 2006 IPCC FOD방법의 입력변수로 사용되는 메탄발생속도 상수(k)를 산출하여 보았으며, 또한 이 결과를 default valus 적용한 2006 IPCC GL의 FOD방법에 의한 메탄 배출량 산정결과와 비교하여 보았다. 2006 IPCC GL에 제시된 FOD방법의 메탄 배출량 산정식을 이용한 k값 산정 결과, H 매립지의 산정된 평균 k값은 0.0413 yr-1, Y 매립지의 산정된 평균 k값은 0.0117 yr-1로 나타나 IPCC 가이드라인에 제시된 기본값이 0.09 yr-1에 비하여 상대적으로 낮은 값을 보였다. 또한 현장측정에 의해 산출된 k값들과 2006 IPCC GL의 default value을 이용하여 H, Y매립장에 대하여 메탄가스 배출량을 비교해본 결과, H매립지(1994년~2012년)와 Y매립장의 메탄가스 총배출량이 현장측정에 비하여 492.7%와 166.5%나 과다산정되는 것으로 나타나 매립지에서 발생하는 정확한 온실가스 배출량 예측을 위해서는 각각의 매립지별 현장 측정을 통한 고유의 k값 결정을 통한 산정이 진행돼야 할 것으로 판단된다.
Most of methane gas result from waste matter in landfill, therefore the persons concerned take an increasing interest in management of gases in landfill. Infrared Gas Analyzer was used to measure components of gases, CH4, CO2, O2, through gas exhausted pipe. To measure amount of the gas flow meter(Portable Hot-Line Current Meter) was used and it was set at right angles with direction of the flow. In this research the total amount of methane gas produced in Beck-Suk Landfill was calculated through FOD method suggested by IPCC. This research found that in Chon-An Beck-Suk Landfill anaerobic resolution was made actively and the amount of methane gas produced there was 54.14%, which is higher than common figure, 50%, in other researches. The components of reclaimed waste matter, especially, organic waste matter can have a great effect of the amount of the greenhouse gases produced in landfill. We can expect that the amount of greenhouse gas will decrease from 2005, when it will be prohibited from carrying kitchen refuse and sludge into landfill.