This study aims to quantitatively evaluate the life cycle carbon emissions of continuously reinforced concrete pavements on Korean expressways. The analysis focuses on assessing the effect of the changes in pavement design life and maintenance frequency on total carbon emissions to provide a basis for effective carbon reduction strategies. In accordance with ISO 14040 and ISO 14044, carbon emissions were calculated using actual design documents, including bills of quantities and unit price lists. National emission factors were applied to each life cycle stage, including the maintenance stage that was modeled based on the standard maintenance scenarios of the Korea Expressway Corporation. The study also conducted a scenario-based evaluation to examine the impact of extending the pavement design life from 20 to 30 years on maintenance-related emissions. The usage stage accounted for the largest share of total emissions, followed by the material production and maintenance stages. Notably, repeated asphalt overlay maintenance contributed significantly to emissions. Extending the design life reduced the number of high-emission maintenance activities, leading to a significant reduction in the total life cycle emissions. Extending the pavement design life and optimizing maintenance cycles were effective strategies for reducing the life cycle carbon emissions in road infrastructure. Furthermore, applying eco-design principles—such as incorporating recycled aggregates or low-carbon cement during the design stage—could further enhance sustainability. Future research should include various case studies and support the development of standardized national life cycle inventory databases for road infrastructure systems.
This paper focuses on methods for quantifying landfill gas emissions, including odor, odor generation mechanisms, odor emission characteristics according to the time of waste deposition, and odor measurement data from landfills. This study analyzed the concentration ranges and median values of 22 odor compounds measured at landfill gas collection wells and various landfill surface locations across both domestic and international landfill sites. These locations included active operational areas, final cover surfaces, and leachate treatment zones. The odor with the highest measured concentration at the landfill gas collection well was H2S (with a median value of 818,616 mg m–3). During landfill operations and on the surface of uncovered landfill layers, the concentrations of NH3 (with a median value of 1,613 mg m–3) and H2S (with a median value of 279.5 mg m–3) were found to be high . Concentrations of toluene, xylene, ketones, and sulfide odors were also high at covered landfill surfaces. Additionally, NH3, styrene, and H2S had high concentrations in the leachate treatment area. The odor intensity, measured on the surface of covered sanitary landfills for domestic waste, ranged from 6 to 2,080 mg m–3 (dilution to threshold). The concentrations of NH3 and H2S were relatively high in domestic sanitary landfills. The odorous compounds that contributed the most to odor intensity were nitrogen-containing odors, sulfur-containing odors, and aldehydes. In order to effectively manage landfill odors in the future, research should be continuously conducted to accurately measure and predict odor emission fluxes from landfills. In addition, it will be necessary to develop emission reduction technologies that take into account landfill odor emission characteristics.
This study analyzed the emission characteristics of major air pollutants (dust, nitrogen oxides, hydrogen chloride, and carbon monoxide) emitted from domestic public waste incineration facilities based on their operating elements. Using automatic measuring equipment for smokestacks (TMS), data was collected from 97 facilities from 2015 to 2023. The emission source unit (kg/ton) was evaluated based on the facility’s capacity, aging level, and incineration type. Emissions were calculated, and descriptive statistical analysis was performed based on the mean, standard deviation, and coefficient of variation. As a result of the analysis, it was found that the larger the facility capacity, the lower the average emission and volatility, which suggests that the operational stability of large facilities is high. On the other hand, facilities that had deteriorated for 10 to 15 years had the highest emission rates, and emissions decreased in facilities that were aged more than 20 years. In addition, the pyrolysis and high-temperature melting incineration facilities had lower NOx and HCl emissions than the conventional incineration type. Furthermore, CO showed the greatest volatility overall, which was found to be particularly difficult to manage in facilities in the early to mid stages of aging. These results provide empirical evidence that the structural characteristics and incineration type of incineration facilities have a significant impact on air pollutant emissions and can serve as useful basic data for policy-making, including for implementing region-wide initiatives and planning major repairs in the future.
This study evaluated the emission characteristics of volatile organic compounds (VOCs) from 29 asphalt concrete (ascon) manufacturing facilities in South Korea. VOC concentrations were measured inside industrial stacks and storage silos and during and after the truck loading process. Based on these measurements, emission factors were calculated according to facility type and fuel consumption rate. Afterward, they were compared with emission factors set by the United States Environmental Protection Agency (U.S. EPA). The major VOCs emitted from ascon manufacturing facilities were identified as benzene, toluene, ethylbenzene, and the xylene isomers (o-xylene, m-xylene, and p-xylene). The emission concentrations of the VOCs were found to be relatively higher inside industrial stacks and storage silos. Emission factors varied depending on the facility type, with lower values observed in manufacturing facilities using recycled ascon compared to conventional ascon facilities. The emission factors derived in this research were found to be lower than those reported by the U.S. EPA. This difference is attributed to the fact that the emission factors in this study were calculated based on VOC concentrations after treatment by pollution control facilities. As the Clean Air Policy Support System (CAPSS) also sets emission factors based on post-treatment concentrations, this study’s findings can serve as fundamental data to enhance the accuracy of VOC emission estimations.
This study measured and analyzed the discharge concentration and characteristics of odor substances emitted from the discharge outlets of asphalt manufacturing facilities in South Korea. Measured factors included flow rate, composite odors, and 22 designated odor substances. After applying the dilution factor of composite odors emitted from 33 asphalt manufacturing facilities located in various regions to the composite odor emission standard of 500 times, it was found that more than half of these facilities exceeded the emission standard. The contribution rate of the designated odor substances from the discharge outlets was the highest for acetaldehyde at over 50%, followed by hydrogen sulfide and methyl mercaptan. The correlation between composite odors and the concentration of major designated odor substances was analyzed, and it was found that methyl mercaptan and acetaldehyde showed some correlation with the composite odor dilution factor. The methyl mercaptan odor intensity corresponding to the odor intensity of 4.5 to 5 ppb, which is the allowable odor dilution multiple emission standard of the odor emission source outlet, was estimated to be approximately 1.6 to 2.2 ppb, and the corresponding methyl mercaptan emission concentration range was estimated to be 0.98 to 2.02 ppb. The composite odor emission coefficient of asphalt concrete manufacturing facilities was estimated to be higher for general asphalt concrete than for asphalt concrete recycling facilities, and the composite odor emission coefficient of newly produced general asphalt concrete was estimated to be greater than that of recycled asphalt concrete. In terms of fuel usage, the composite odor emission coefficient of facilities that used Bunker C fuel oil was estimated to be higher than that of facilities powered by LPG and LNG fuel. It was deemed necessary to select 2 to 3 major designated odor substances that are correlated with the composite odor dilution factor for each major odor emission source, set the designated odor substance concentration corresponding to the composite odor dilution factor emission allowance standard, and review a plan to monitor the designated odor substances at the emission point.
This study investigated the correlation between compound malodor and total hydrocarbons (THC) to evaluate the potential use of THC as a predictor of compound malodor. A total of 87 samples were analyzed from five target facilities: two petrochemical manufacturing facilities (A, B), a wastewater treatment facility (C), a recycled plastic injection molding facility (D), and a surfactant manufacturing facility (E). The correlation coefficients of compound malodor and THC for each facility were as follows: A: 0.6698, B: 0.8068, C: –0.2767, D: 0.2071, and E: 0.7695. The correlation coefficient for all facilities was 0.5634, indicating a weak correlation. The coefficients of determination for the regression analysis to predict the compound malodor for facilities A, B, and E were 0.4093, 0.6316, and 0.5695, respectively, which validated the results of the correlation analysis. These values improved to 0.8394, 0.6941, and 0.7476 in the multiple regression analysis with the VOC analysis results added as independent variables. Therefore, it is expected that THC measurement that considers the characteristics of the facility can be used to establish a systematic odor management plan.
본 연구는 도로 관리 주체의 Scope-3 배출량을 포함한 교량의 탄소 배출량을 정량적으로 산정하는 것을 목표로 한다. 기존의 탄소 배출량 산정 방식은 주로 직접 배출(Scope-1)과 간접 배출(Scope-2)에 초점을 맞추었으나, 도로 및 교량과 같은 사회간접자본(SOC) 시설에서 발생하는 Scope-3 배출량을 포함하는 종합적인 평가가 필요하다. 이를 위해 HDM-4 모델을 활용하여 교량의 노면 상태(IRI, Roughness)에 따른 연료 소비량 변화를 분석하였으며, PSC BEAM교를 대상으로 사례 연구를 진행하였다. 연구에서는 공기 저항, 구름 저항, 구배 저항 등의 주요 동력 저항 요소를 고려하여 연료 소비량을 산정하였으며, 이를 통해 단위시간당 연료소모량(IFC)과 총 연료 소비량을 평가하였다. 연구 결과, 도로 관리 주체가 교량 운영 단계에서 발생하는 Scope-3 배출량을 정확히 평가하는 것이 전체 탄소 배출량 산정에서 중요한 요소임을 확인하였다. 본 연구는 향후 도로 및 교량 설계, 유지보수 단계에서 탄소 저감 전략을 수립하 는 기초 자료로 활용될 수 있을 것으로 기대된다.
국제사회는 1992년 유엔기후변화협약(UNFCCC), 1997년 교토의정서, 2015년 파리협정, 2018년 IPCC ‘1.5℃ 특별보고서’ 채택을 통하여 온실가스 감축 목표를 세워 기후 문제에 대응하고자 하였다. 이러한 흐름에 대한민국은 2020년 ‘2050 탄 소중립 선언 및 비전을 선포하였고, 2021년 탄소중립기본법을 제정하였다. 이중 도로 건설도 환경영향평가의 대상으로 설정하여 인프라 시설물의 탄소중립에 노력을 기울이고 있다. 하지만 2011년 국토교통부의 ‘시설물별 탄소배출량 산정 가이드라인’ 외 구체적인 생애주기 분석 방법이 부재한 상황이며 기수행된 연구에서는 전과정이 아닌 특정 수명주기에 집중하였던 단점이 존재하였다. 특히 수명주기 중 사용단계는 시설물 이용, 유지관리, 에너지 및 용수 사용 등의 내용을 포함하며 2023년 세계 경제 포럼은 사용단계의 탄소배출량이 평균적으로 전체 탄소배출량의 70%를 차지한다고 발표하였 기 때문에 사용단계의 탄소배출량을 산정하는 것은 중요하다. 따라서 본 연구에서는 국제 표준 ISO 21930:2017의 전과정 평가 LCA(Life Cycle Assessment) 방법과 국토교통부의 ‘시설물별 탄소배출량 산정 가이드라인’을 따라 국내 탄소배출 계수를 기반으로 도로건설 전과정의 생애주기 구분을 하였고, 탄소배출량을 산정하였다. 이를 통해 국내 환경영향평가 방법의 보완에 기여하고자 한다.
본 연구는 국내 주요 항만에 정박 중인 선박들의 이산화탄소 배출 특성을 항만별, 선박 유형별로 배출 현황을 파악하여 향후 배출 저감 정책 수립에 필요한 기초 자료를 제공하는 것을 목적으로 한다. 이를 위해 항만운영정보시스템 데이터를 활용하여 2019년부터 2023년까지 최근 5년간의 정박 선박 데이터를 수집, 분석하였다. 연구 결과, 탱커선과 화물선이 전체 탄소 배출량의 대부분을 차지하며, 부산항, 울산항, 광양항 등 주요 무역항에서 배출량이 높게 나타났다. 특히, 탱커선은 정박 중 화물 가열 및 증기 구동 펌프 사용 등으로 인해 타 선종에 비해 발전기 사용이 많아 높은 배출 특성을 보였다. 이러한 결과는 항만 내 육상전원공급장치(AMP)의 설치 확대가 필요 함을 시사하며, 특히 탱커선이 접안하는 선석을 우선적으로 AMP 설치 대상으로 선정하는 것이 효과적일 것으로 판단된다. 본 연구는 국 내 항만에서 정박 선박의 이산화탄소 배출 특성을 체계적으로 파악하여 효율적인 배출 저감 전략을 수립하는 데 기여할 것으로 기대된 다.
The management of pollutant emissions from industrial sites involves various crucial steps, including estimating emission quantities and assessing their impact on surrounding areas. While emissions from point sources, such as exhaust outlets, are relatively easier to manage, emissions from area sources, such as workshops and livestock facilities, are often challenging to measure due to various constraints. To address this issue, this study proposes a method for estimating emissions from area sources by utilizing data collected at site boundaries and applying a reverse modeling approach. Using data from actual livestock facilities, along with reverse modeling results, this study identified a strong correlation between the facility area and the number of livestock raised. Correlation analyses revealed positive relationships between the facility area and the average odor emission rate, as well as between the number of livestock and the average odor emission rate. In addition, the results of reverse modeling confirmed a significant correlation between odor emissions, the number of livestock, and the facility area. Based on these findings, this study developed an odor emission factor for livestock facilities using the number of livestock and the facility area as activity indicators. The odor emission factor is expressed in units of OU/s/pig/m², where “OU” represents odor units, “s” denotes seconds, “pig” corresponds to the number of livestock, and “m²” refers to the total facility area. By multiplying the number of livestock by the facility area, the total odor emission rate (OU/sec) can be calculated. Unlike traditional emission factors that rely solely on the number of livestock, this newly developed factor incorporates all facilities contributing to odor emissions within a livestock operation. This approach allows for the estimation of odor emissions using external measurement data and facility information, even in cases where direct measurements are impractical. The results of this study are expected to be effectively utilized for odor evaluation and management in livestock facilities.
This study sought to improve the accuracy of estimating national emissions of volatile organic compounds (VOCs) from consumer solvent products (CSPs) by updating emission factors and category-specific activity data. The classification of the CSPs, which was originally proposed by the U.S. Environmental Protection Agency, was reorganized to reflect domestic consumption patterns in Korea. VOC contents, product sales, and atmospheric evaporation rates of the CSPs were analyzed for subcategories including personal care products, household products, and automotive aftermarket products to update their emission factors. Additionally, the category-specific activity data, previously based on only population statistics, were newly applied to count the characteristics of each classification, such as the number of households and the number of registered automobiles. The updated emission factors were calculated to be 1.90 kg/capita·yr for personal care products, 4.37 kg/household·yr for household products, and 2.36 kg/car·yr for automotive products. An evaluation of uncertainties revealed the limitation in the product classification, the shortage of sales data, and the lack of information on VOC contents depending on the product forms (liquid, solid, and aerosol). This study highlighted the necessity of developing detailed classification systems and standardized VOC content measurement methods, ultimately contributing to more accurate and practical assessments of VOC emissions from the CSPs.
This study was conducted to efficiently manage THC, which was previously managed only through self-measurement. Using Selected Ion Flow Tube Mass Spectrometers, a real-time air quality measurement device, VOCs were measured in five industrial complexes, and methyl ethyl ketone was measured at the highest concentration in the industrial complexes. THC measurements were conducted at business sites located in the area. As a result of the measurements, printing processes, drying processes, etc. exceeded the emission standard of 110 ppm in three processes, and the outlets that exceeded the emission standard were instructed to improve prevention facilities such as activated carbon replacement, thereby reducing highconcentration VOC emissions. The results of the study suggest that if inspection agencies measure VOCs in real time and conduct Total Hydro Carbon measurements, etc. mainly in high-concentration areas, VOCs and Total Hydro Carbon, which are the causes of greenhouse gases and odors, can be efficiently reduced.
This study aimed to assess the global and domestic efforts regarding the reduction of environmental-impact-factor emissions in the production and construction processes of concrete pavements. By utilizing internationally commercialized programs, this study sought to calculate the environmental impact factors generated by specific domestic concrete-pavement projects and identify areas for improvement. This study evaluated the global and domestic efforts of environmental impact reduction by focusing on the production and construction of concrete pavements. This study calculated the environmental impact factors for five cases using internationally commercialized software. The analysis revealed that, during the production and construction of concrete pavements, Portland cement production is a dominant cause of global warming, smog, acidification, and non-carcinogenic factors, whereas aggregate production is a dominant cause of ozone depletion, eutrophication, carcinogenicity, respiratory issues, environmental toxicity, and fossil-fuel depletion. This study analyzed the environmental impact factors of material mix and process during concrete pavement production and construction using foreign life-cycle inventory (LCI) databases. The environmental impact of each input material was identified. In the future, if an LCI and life-cycle impact assessment (LCIA) database for domestic road pavement materials is established and analyzed based on the conditions presented in this study, it is expected to lay the foundation for the development of environmentally friendly materials.