PURPOSES : In this study, a method for improving roadside barrier performance by introducing additional reinforcing materials without dismantling or drilling the old underperforming roadside barrier is developed based on the Installation and Management Guide for Roadside Safety Feature.
METHODS : Reinforcing roadside barriers comprising reinforcement rails, impact absorbers, blockouts, and support reinforcement plates attached to an old underperformance roadside barrier were designed and manufactured. The manufactured prototypes were subjected to a vehicle crash test to verify their performance.
RESULTS : In a structure whose performance is measurable after it collides with a large truck, the minimum strength of the structure to withstand the collision is maintained. Additionally, the safety of passengers measured via the collision test of a small vehicle is excellent. Hence, the reinforcement plan for the old underperforming roadside barrier satisfies all the performance evaluation standards.
CONCLUSIONS : The cost of the improvement technology specifications proposed herein is approximately 50% lower than that of a SB3 level roadside barrier. The proposed method for improving the old underperforming roadside barrier is expected to be widely applied as it can be applied conveniently to road sites.
2010년 인천공항으로 향하던 공항버스가 인천대교 부근에서 노측용 방호울타리를 뚫고 넘어서 추락하는 사고가 발생되었다. 사고 장소에 설치된 방호울타리는 평지부에서 실차충돌시험을 거쳐 성능이 검증된 방호울타리로서 시험성적에는 문제가 없는 제품이었다. 하지만 실차충돌시험을 수행할 당시에는 ‘도로안전시설 설치 및 관리지침-차량방호 안전시설 편, 국토교통부’에 따라 평지부에서 시험을 수행하였으나, 실제 도로현장에서는 대부분의 방호울타리가 평지부가 아닌 성토부에 설치되어 가드레일 지주의 수평지지력이 성능시험 조건보다 매우 취약하다는 문제가 제기되었다. 이를 계기로 국토교통부는 실차충돌시험을 평지부가 아닌 현장조건과 동일한 성토부에서 수행하도록 2012년 지침을 개정하였으며, 시험기관에서는 실차충돌시험 시에 지주의 수평지지력 시험을 수행하여 시험성적서에 지지력 값을 명기하도록 하였다. 따라서 현장에 설치하고자 할 경우에는 설치현장의 수평지지력 시험을 수행하여 시험성적서의 지지력보다 낮은 경우에는 지주를 보강하여 시험장지지력의 90% 이상 만족하도록 하였다. 특히, 2012년 지침이 개정되기 이전에 평지부에서 실차충돌시험을 거친 방호울타리의 경우에는 지지력이 상대적으로 높기 때문에 반드시 현장지지력 시험을 거쳐 지주 보강방안을 마련하도록 하였다. 공인시험기관의 평지부에서 수차례 수평지지력 시험을 수행한 결과, 지침 개정 이전에 평지부에서 실차충돌시험을 수행한 방호울타리는 수평지지력을 4.5tonf으로 가정하고 현장의 성토부에 설치할 경우에는 지주 지지력이 4.5tonf의 90% 이상 확보하도록 규정한 것이다. 지주의 수평지지력 시험은 지주를 성토부의 시작점(B.P)에 지주를 설치하고, 유압실린더나 윈치 등 적절한 가력장비를 이용하여 지주를 수평방향으로 인장 또는 압축하여 지주가 성토부 방향으로 변형되도록 힘을 가한다. 횡하중 가력높이는 지표면으로부터 650mm로 하고 가능한 지주가 더 이상의 하중에 저항하지 못할 때까지의 하중-변위 관계를 계측한다. 충돌시험장에서 계측된 지주의 하중-변위 관계는 제품의 시험성적서에 명기하고 변위가 350mm일 때의 하중을 지주의 수평지지력으로 본다. 만일 최대하중이 변위 350mm 이전에 나타난다면 그 하중을 수평지지력으로 볼 수 있다. 본 연구에서는 방호울타리의 지주 보강방안을 개발하여 한국도로공사 도로교통연구원에서 수평지지력 시험을 수행하였다. 보강방안은 보강지주 길이가 0.9m와 1.2m로 두 가지 타입에 대하여 각각 보강 전·후로 지지력 지지력시험을 수행하여 비교하였다. 시험결과 보강길이 0.9m의 경우에는 보강 전·후 466%의 보강효과를 보였으며, 1.2m의 경우에는 보강 전·후 300%의 보강효과를 보였다.
국내 차량방호울타리 성능시험조건과 도로설치조건이 달라 대형교통사고 유발 등의 문제점이 야기되고 있어 2012년 11월에 도로안전시설 설치 및 관리 지침(국토교통부, 2012)이 개정되었다. 성능시험조건이 기존 평지부에서 성토부로 변경되었고 성토부에 설치되는 연성 차량방호울타리는 지주의 수평지지력(현장지지력)이 측정되어야하며 그 값이 실물충돌시험장에서 확인된 수평지지력의 90% 이상이 되도록 하고 있다. 따라서 현장 지주지지력이 시험장 지주지지력의 90% 보다 작은 경우에는 지주의 매입깊이 증대나 다른 보강방안을 적용하여 90% 이상이 되도록 하여야 한다. 본 연구에서는 SMART Highway N등급(지 침 SB3-B)과 H1등급(지침 SB5-B) 지주의 성토부 수평지지력이 평지부의 90% 이상이 나타나게 하는 지주 보강방안을 결정하고자 하였다. 그림 1과 같은 다양한 지주 보강방안에 대하여 지주 수평지지력 시험을 수행하였고 다양한 보강방안에 대한 지주 횡방향 힘-변위 관계가 그림 2에 나타나있다. 흙의 저항체적을 증가시키는 그림 1(b)와 Bracing을 설치하는 그림 1(c)와 같은 보강방안이 시험장 지주지지력의 90% 이상이 되게 하는 보강방안으로 조사되었다.
In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. From the results of analysis, the efficiency of the seismic retrofitting methods RC shear wall, steel frame, RC frame and PC wing wall for existing RC school buildings was evaluated and analysised. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms in the column of the first story. And results of analysis of the efficiency of the seismic retrofitting indicate that inter-story drift significantly reduced and ductile behavior is expected.
본 연구에서는 교량의 내진보강방안을 합리적으로 결정하기 위하여 기존교량 및 보강된 교량의 지진하중에 대한 손상가능성을 이용하여 보강에 따른 내진성능 향상효과를 분석하였다. 교량의 내진보강에 따른 효과는 기존교량 및 보강된 교량에 대해 평가된 보강우선순위의 변화를 통하여 분석하였다. 이를 위하여 본 연구에서는 선행적으로 교량의 사용수명동안에 발생가능한 지진하중에 의한 지진취약부위의 손상확률과 손상으로 인해 예상되는 총 손실비용에 근거한 지진취약부위별 가중치를 이용하여 교량별 내진보강 우선순위를 결정할 수 있는 평가기법을 제안하였다. 제안된 평가기법의 타당성을 검증하기 위하여 다른 형식을 갖는 4개의 PSC 거더교를 대상으로 내진보강 우선순위를 평가하였다. 또한 각 지진취약부위별로 내진 보강된 교량에 대해 재평가된 순위지수를 기존교량에 대해 평가된 결과와 비교함으로써 각 교량별로 적용된 보강기법의 적합성을 검토하였다. 기존교량 및 보강된 교량에 대한 모의분석결과로부터 적용된 보강방안에 따라 해당취약부위의 손상가능성은 상당히 감소될 수 있으나 반면에 인접한 지진취약부위의 손상가능성은 증가되는 경향을 보이는 것으로 나타났다. 그러므로 기존교량에 대한 합리적인 보강방안을 결정하기 위해서는 내진보강에 따른 교량의 전체적인 거동특성변화에 따른 보강효과분석이 필수적으로 요구되며, 이는 본 연구에서 제안한 내진보강 우선순위 평가기법에 따라 기존교량 및 보강된 교량의 보강우선순위를 평가, 비교함으로써 효과적으로 수행될 수 있는 것으로 분석되었다
The chevron braced frames designed without considering the unbalanced force induced in floor beams tend to become unstable when they are subjected to a seismic load. To enhance the seismic performance of OCBF chevron braced frames the effect the following three retrofit schemes are investigated: buckling-restrained braces, zipper columns, V-shaped cables. According to analysis results of unretrofitted model structures, collapse mechanism occurred in a certain story when they were subjected to design level seismic load. However in the retrofitted structures the plastic hinges were distributed in many stories, and the amount of plastic deforrnation was also decreased.
필로티 건물의 평면 비정형으로 인한 비틀림 거동은 비틀림 회전 최외단 기둥에 과도한 층간변위를 일으키고 이로 인하여 기둥의 전단파괴를 유도할 수 있다. 필로티 건물의 비틀림 거동을 제어할 수 있는 내진보강 공법으로서 벽체 증설, 철골 프레임 또는 철골 가새 추가공 법 등이 사용될 수 있으나 이와 같은 공법 들은 필로티 층의 공간 개방성을 저해할 우려가 있다. 따라서 본 연구에서는 필로티 층의 공간 개방성을 유지할 수 있는 내진보강 공법으로서 knee brace를 활용하기 위하여 knee brace 보강재 단면 형상 및 보강재 설치 각도 등을 변수로 보강된 필로티 건물에 대하여 선형동적해석 및 비선형 정적해석(pushover analysis)을 수행하고 내진성능 평가 및 knee brace의 비틀림 제어효과를 분석 하였다. 연구 결과 knee brace로 보강 시 기둥의 전단력은 증가하였으나 비틀림 변형을 제어하는데 효과가 있는 것으로 나타났다. knee brace와 기둥 사이를 30°로 보강 시 60°의 경우보다 기둥의 전단력은 적게 증가하였으며, 단면형상 □, ◯ 그리고 H 순으로 기둥의 횡변위가 적게 발생 하였다.
The purpose of this study is to investigate the causes of corrosion of steel plate deck longitudinal U-ribs and to investigate the reinforcement method. It was confirmed that the corrosion of the longitudinal U-ribs occurred due to penetration water of the bolt hole of the shear key used in construction. The longitudinal U-ribs which were corroded were stiffened by attaching reinforcing plates, and finishing treatment was performed to prevent the surface water from flowing into the inside.
Most of the apartment buildings to be remodeled are in the form of wall structures, and walls are very important structural members. When remodeling, there are cases where existing walls are demolished and new walls are installed. If a wall is newly installed, the continuity of the wall from the foundation to the top floor must be ensured. Some slabs prevents the vertical continuity of the reinforced wall. It is because the upper and lower wall reinforcing bars must be connected through the demolished slab and the concrete must be poured. Therefore, in this study, the method to secure the vertical continuity of the reinforced wall during the remodeling will be examined.
기존 고속철도 자갈궤도구간에서는 궤도 비틀림 현상이 발생하여 안전 위협, 승차감 저하, 유지 및 보수 비용증가, 유지 및 보수 작업으로 인한 열차운행 지연 등의 문제점이 발생하고 있는 실정이다. 궤도구조 개량공사는 열차차단 시간 내에 공사를 완료하고 공사 후 궤도에 대한 구조적인 안전성도 확보해야 한다. 이를 해결하기 위하여 열차차단 시간 내에 궤도 구조를 개량 할 수 있는 급속경화궤도 기술개발에 대한 연구가 진행되고 있다. 급속 경화궤도는 일반 자갈도상궤도를 콘크리트 슬래브화 시키는 공법이며 기존의 콘크리트궤도와 상이하게 철근이 사용되지 않고 자갈과 초속경 모르타르로 구성되어있다. 국내 고속철도에서 콘크리트경화궤도의 시공이음부에서 구조적 문제가 다수 발생하고 있다. 본 연구는 급속경화궤도 시공 시 발생하는 시공이음매에 대한 보강방안으로 자갈맞물림(Aggregate interlock), Dowel bar, Dowel plate, 지오그리드로 매개 변수화하여 급속경화궤도 시공이음부 보강구조의 성능 검증 실험을 수행한다. 이를 통해 급속경화궤도 슬래브 간에 하중전달효율을 분석하고 급속경화궤도 시공에 적합한 방안을 도출하고자 한다.
Failures of curved bridge have been occurred due to the negative reactions in construction and in survice and this problem has been issued in our society. In this study, the strengthening method of curved bridge which was occured negative reactions was investigated through the structural stability analysis.
최근 기상자료에 의하면 연평균 3개 정도의 태풍이 우리나라에 영향을 미치며, 연중 8월, 7월, 9월 순으로 3개월 동안 대부분의 태풍이 내습하는 것으로 보고되고 있다(기상청 국가태풍센터, 웹페이지: typ.kma.go.kr). 대부분 이로 인해 항만구조물의 피해가 발생하고 있는 것으로 보고되고 있다. 최근 발생한 대형 태풍 사례를 보면, 2012년 8월 제15호 태풍 볼라벤(Bolaven)의 내습으로 서귀포항 외곽방파제에 대규모 피해가 발생하였다. 서귀포항의 경우에 2003년 9월 제14호 태풍 매미(Maemi) 내습시에도 유사피해가 발생한 이력이 있다. 2003년 태풍 매미 내습시에는 외항방파제의 곡부(볼록부)를 중심으로 피해가 발생하여 72ton급 테트라포드(T.T.P) 및 기초사석 유실과 상치콘크리트의 일부 파손이 발생하였으며 공사중에 있던 방파제 내측 접안시설의 상치콘크리트 및 블록이 일부 파손유실 되었다. 또한 1999년 태풍 올가 내습시에도 시공중이었던 방파제 제두부 및 볼록부에 거치된 72ton급 테트라포드가 이탈 및 유실되는 피해가 발생하였다. 2012년 태풍 볼라벤의 내습시에는 2003년에 비해 더 큰 피해가 발생된 것으로 판단되며, 외곽방파제의 볼록부를 포함한 제간부의 대부분에서 피복재(72ton급 T.T.P) 및 기초사석이 유실되었다. 또한 항내측 안벽 일부 및 외항방파제 보강 BOX 기초부 등의 파손 및 유실피해가 발생하였다.
강바닥판의 구조상세에 대하여 많은 연구가 이루어지고 있으나, 대부분의 연구가 표준형의 U-rib를 대상으로 실시되었을 뿐, 강바닥판 건설초기의 개단면리브형식에 대한 연구는 미진한 것으로 조사되었다. 본 연구에서는 공용연수 31년된 개단면세로리브형식의 강바닥판 교량의 피로균열 발생 원인을 조사하기 위하여 실교통류하에서의 계측 데이터를 통하여 대상구조상세의 거동 특성을 분석하였다. 또한 상세구조해석을 통하여 대상교량을 통과하는 대표트럭하중을 추정하고, 상세영향면해석을 이용하여 대상구조상세의 응력 및 변형특성을 분석하였다. 이들 분석에 기초하여 피로균열이 발생된 대상구조상세의 보강방안을 제시하고, 이에 대한 타당성을 검증하였다. 연구결과, 개단면리브에서의 피로균열의 발생원인은 개단면부에서의 전단변형에 의한 응력증가 및 차량의 이동에 따른 교번응력의 발생에 기인하는 것으로 조사되었으며, 국부구조상세에 대한 피로설계에서는 구조상세의 거동특성이 충분히 반영된 상세해석에 근거한 설계를 실시하는 것이 중요하다는 것을 알 수 있었다.
본 연구의 목적은 RC 전단벽의 구조성능 개선을 위한 보강방법을 연구하는 것이다. 이를 위하여 형상비가 2.2인 4개의 RC 전단벽 실험체를 제작하고 모르터로 단면을 증설하거나 강판 등으로 보강하는 방법으로 실험체의 휨성능을 향상시켰다. 보강이 완료된 실험체에 대하여 일정축력을 작용시킨 후 반복횡하중을 가력하여 구조성능을 평가하였다. 이때 작용시킨 횡력은 ACI에서 제시한 이력에 준하였다. 실험결과, 추가의 철근을 배치하고 단면을 증설한 경우에는 내력과 변형능력을 모두 증대시킬 수 있는 것으로 나타났으며 특히, 단면증설과 함께 단부에 U형태로 용접철망으로 횡구속한 실험체의 경우에는 강도와 연성의 측면에서 가장 효율적인 보강으로 확인되었다. 강판으로 보강하는 방법은 항복이후 부재의 급격한 내력저하를 방지하고 부재의 변형능력을 상승시키는데 매우 효과적인 것으로 나타났다.
국내에는 약 18,000여개의 댐이 있는 것으로 보고되고 있다. 이 중에서 대댐으로 분류되는 1,200여 개의 대댐은 비교적 양호하게 운영 관리되고 있으나, 지자체 등에서 관리하는 소규모의 댐들은 대부분 제체를 관통하는 복통을 갖고 있으며, 제도적 장치의 미비와 전문 인력의 부족으로 체계적인 유지관리가 거의 이루어지지 않고 있는 실정이다. 본 연구에서는 소규모 댐들에서 자주 발생하는 결함의 유형에 대해서 고찰하고, 결함의 보수보강을 통하여 소규모 댐의 안전을 확보할 수 있는 방법을 제시하고자 한다. 또한, 전기비저항 탐사를 통하여 결함의 진행정도를 파악하고, 보수보강 이후의 보수보강 효과를 판정하는 방법론을 제시하고자 하였다.