검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        1.
        2024.10 구독 인증기관·개인회원 무료
        Block pavements are widely used in various infrastructures, offering durability and aesthetic appeal. However, assessing their condition through manual methods is resource-intensive and subjective. This study proposes a deep learning approach using the Hybrid TransUNet model to enhance the accuracy and efficiency of detecting block pavement distresses. A dataset of over 10,000 images was used to train and test binary and multiclass segmentation models, significantly improving detection accuracy. The results show that the Hybrid TransUNet model outperforms other models, though challenges in detecting certain distress types like cracks persist.
        2.
        2024.10 구독 인증기관·개인회원 무료
        도심부 도로에서 불투수면적 증가로 인해 발생한 홍수 및 물순환 장애 문제를 해결하기 위해, 투수블록포장이 도입되고 있으며, 물순환 시스템 강화의 필요성에 따라, 투수블록포장은 효과적인 대안으로 주목받고 있다. 투수성 포장의 성능 향상 을 위해서는 교통 하중 지지력을 만족하고, 투수 성능을 동시에 확보해야 하므로 표층뿐만 아니라 하부 투수기층의 설계 기준과 입도 특성에 대한 고려가 필요하다. 그러나, 국내의 경우 설계법이 잘 정립되어 있지 않고, 국외에서는 AASHTO 93 설계법을 구조설계법으로 적용하고 있으며, 투수성 포장재료의 상대강도계수에 대한 연구가 부족하여 다양한 재료에 대 한 설계 적용이 어려운 한계가 존재한다. 이에 본 연구는 투수블록포장 하부 투수기층 골재의 물리적 특성과 입도 기준에 관한 고찰을 통해, 내구성 향상을 위한 설계 요인과 투수 성능 간의 관계 분석 결과를 정리함으로써, 두 방향을 모두 고려하여 효율적인 골재 입도 구성을 도모할 수 있는 적합한 방향성을 정립하는 것을 목표로 한다. 다양한 투수성 포장 설계 조건과 성능에 관한 연구를 다루는 문헌을 수집해 투수 블록포장의 하부구조 단면 설계에 적용할 수 있는 기준 및 연구 방법론을 정리함으로써 실무 연구자들의 국내 연구 활성에 기여하고자 한다
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A model for minimizing cutting loss and determining the optimum layout of blocks in pavements was developed in this study. METHODS : Based on literature review, a model which included constraints such as the amount, volume, overlap, and pattern, was developed to minimize the cutting loss in an irregular pavement shape. The Stach bond, stretcher bond, and herringbone patterns were used in this model. The harmony search and particle swarm algorithms were then used to solve this model. RESULTS : Based on the results of the model and algorithms, the harmony search algorithm yielded better results because of its fast computation time. Moreover, compared to the sample pavement area, it reduced the cutting loss by 20.91%. CONCLUSIONS : The model and algorithms successfully optimized the layout of the pavement and they have potential applications in industries, such as tiling, panels, and textiles.
        4,000원
        6.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Abroad, road pavement materials vary depending on the speed and traffic volume of vehicles, but owing to the negative perception of block pavements, sidewalks, parking lots, and parks are primarily used in Korea. In addition, since speed restriction policies such as safety speed 5030 have been implemented recently, it is necessary to use block pavements for roadways, which are considered to have the effect of reducing speed. Therefore, it is necessary not only to actively discuss the introduction of block pavements for roadways but to continue research on the effectiveness of the performance evaluation and to change the perception of roads in Korea. METHODS : In this study, five indicators (surface damage, surface temperature, driving speed of vehicle, noise, and suspended dust) were selected for a sustainable road environment. The performance evaluation index of block pavement for roadways was decided according to the domestic and international literature, and the data were collected based on the evaluation index in the section with block pavement for roadways in Korea. RESULTS : The damage rate was calculated 0.35% according to the breakage of block and Maintenance Control Index(MCI) was ranked A~B even though the pavement was used for more than 4~5 years. The surface temperature of block pavement has a temperature reduction effect of 7 ℃ compared with ordinary asphalt pavement and a speed reduction of approximately 4 km/h on average; therefore, the traffic calming effect of block pavements can be expected. The noise of block pavement and asphalt pavement exhibited a similar level, and the noise level experienced by pedestrians did not change significantly as a result of frequency analysis. The measurement of road suspended dust around the road confirmed the possibility of reducing the concentration of road dust in the air owing to the smooth surface drainage and the results indicated the possibility. CONCLUSIONS : The results of this study are expected to contribute to the recognition and functional improvement of domestic block pavements by continuous monitoring to ensure the reliability of blocks. In addition, it is necessary to ensure the reliability of the quality and functional evaluation of paving materials through continuous on-site monitoring.
        4,000원
        7.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate and compare the stiffness characteristics and seasonal variation in surface deflections of block and asphalt pavements using the light weight deflectometer (LWD) and falling weight deflectometer (FWD). METHODS: LWD and FWD testing was conducted on block and asphalt pavement sections in a low-impact development facility, to evaluate the structural capacity and seasonal variation in asphalt pavements. To analyze the seasonal variation in stiffness characteristics, this testing was performed in October 2016, January 2017, and March 2017 in the same drop locations. RESULTS : It was found from that the average center deflections in the asphalt and block pavements were 218 ㎛ and 2974 ㎛, respectively. The center deflections measured using FWD testing in block pavement are 15 times those measured in asphalt pavement. It was also observed that LWD deflections in block pavements were decreased by approximately 65-90% as the air temperature dropped from 20 to 4℃. The degree of reduction in block pavement was significantly higher when compared with asphalt pavement, which showed a 25- 50% reduction in deflection. CONCLUSIONS: When using block pavements for roadways, the structural capacity of the pavement system should be considered during the design and construction stages. In block pavements, the use of low-quality material and insufficient compaction in the base and subgrade layers can induce a reduction in structural capacity, which would lead to the need for frequent repair work. A reinforcement underneath the block layer would be an appropriate measure for improving the structural support and extending the service life.
        4,000원
        8.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to develop a solar powered block pavement system satisfying the road design criteria in Korea. The concrete block pavement system was chosen as the most suitable for development at the current level of technology. METHODS : A new solar block pavement system was conducted by seperating the solar module from the concrete block. The solar panel module is responsible for the solar powered system and the solar concrete block is responsible for the vehicle load support. Quality criteria for block pavements in Korea were collected to select the appropriate quality criteria for a solar block pavement system. The laboratory tests conducted were slip resistance test, compressive strength test and absorption rate test of the concrete blocks, flexural strength test of the acrylic protection panel, and UTM load test of the solar panel module. Solar power measurement was also conducted at the field test section for field performance evaluation. RESULTS : The acrylic protection panels were selected as 15mm thick panels with diagonal patterns of 45°, considering the power generation efficiency, appropriate thickness of the solar power modules, slip resistance and flexural strength. The results of the laboratory tests for evaluating the structural performance of concrete blocks demonstrated that the compressive strength and absorption rate were 22.7 MPa and 3.4% on average, respectively. From these results, it can be observed that the concrete blocks of the solar block pavement system satisfy the block pavement criteria in Korea. As a result of the UTM load test of the solar panel module, the maximum compressive load was found to be 26 tonf on average, and it was confirmed that damage does not occur under a passenger car load. CONCLUSIONS : A new solar block pavement system was developed by seperating the solar module and concrete block. As a results of the laboratory and field tests, both the solar module and concrete block satisfied the quality criteria for block pavement in Korea.
        4,000원
        9.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, we evaluated the quality levels of abrasion resistance and freeze-thaw resistance to the surface layer (colored layer) by using an overseas abrasion resistance test method to confirm the quality suitability of the concrete block surface for a domestic production permeable block. METHODS : In this study, a new evaluation item for increased durability apart from the quality standard of the permeable block was considered, namely, evaluation of the durability of the surface layer and the freeze-thaw resistance of the permeable block itself by EN 1338, ASTM C 779, 994, and GR 4009 (KS F 4419). RESULTS : The abrasion resistance test for the permeable block revealed that there were relative differences according to the different test methods. However, it was observed that if the ASTM C 779 test results did not meet the wear resistance quality standards, it did not satisfy ASTM C 944 and EN 1338. The ASTM C 779 test result was analyzed to have the highest objectivity and discernment, and this test method was proposed as a permeable block wear test method. In addition, the freeze-thaw resistance test method by the GR 4007 standard can be measured by strength, so it is possible to evaluate the resistance of the permeable block through this test method. CONCLUSIONS : The abrasion resistance test and freeze-thaw resistance test can contribute to the improvement of the permeable block when added to the current quality evaluation tests.
        4,000원
        10.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was conducted to analyze the problems of the permeable block by objectively evaluating the quality of the permeable block and providing basic data to improve the quality and construction defect of the permeable block pavement in accordance with the continuously increasing demand of the permeable block. METHODS : In this study, we evaluated the current quality standard suitability of nine products to evaluate the current quality level of domestic production permeable blocks. The evaluation items were evaluated for surface layer thickness, block dimension, strength, and permeability coefficient, and the Korea Standard suitability for these evaluation items was analyzed. In addition, a three-dimensional finite element analysis was conducted to determine the effect of vehicle load on the deformation of block pavement structure. RESULTS : The results demonstrated that the surface layer (colored layer) thicknesses of domestically produced permeable block products were different according to the quality standards, and the dimensions were evaluated to be excellent for domestic permeable blocks currently being produced and delivered. In addition, the strength and permeability coefficient evaluation result demonstrated that all products meet the strength and permeability coefficient quality standards, but the correlation between these strengths and permeability coefficients is not high. The quality standard of strength and permeability coefficients is evaluated as being sufficiently achieved by domestic production technology. CONCLUSIONS: The intensity and permeability coefficients measured in this study were in line with the quality standards; however, the variable coefficient was found to have a significant difference in the quality control level from a maximum of 26% to a minimum 1.7%.
        4,000원
        11.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, a numerical clogging model that can be used to realistically visualize the movement of particles in cylindrical permeability test equipment was proposed based on the system coupling of computational fluid dynamics with the discrete element method and experimental permeability test results. This model can also be used to simulate the interaction of dust particles with bedding particles. METHODS: A 4-way system coupling method with multiphase volumes of the fluid model and porous media model was proposed. The proposed model needs to consider the influence of flow on the dust particles, interaction between the dust particles, and interaction between the dust particles and bedding layer particles. The permeability coefficient of the bedding layer in cylindrical permeability test equipment was not calculated by using the permeability test result, but was estimated by using the particle packing model and Ergun model. RESULTS : The numerical simulation demonstrated a good agreement with the experimental test results in terms of permeability and drain time. Additionally, the initial movement of particles due to the sudden drain hole opening was successfully captured by the numerical model. CONCLUSIONS : A 4-way coupling model was sufficient to simulate the water flow and particle movement in cylindrical permeability test equipment. However, additional tests and simulation are required to utilize the model for more realistic block pavement systems.
        4,200원
        12.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, a series of fundamental falling head permeability tests were conducted on a binary particle mix bedding to determine the minimum water level, bedding layer thickness, and amount of dust that can result in the stable permeability with high repeatability. The determined condition is used to develop a CFD-DEM coupled clogging model that can explain the movement of dust particles in flowing water of a block pavement system. METHODS: A binary particle mixture is utilized to experimentally simulate an ideal bedding layer of a block pavement system. To obtain a bedding layer with maximum packing degree, the well-known particle packing degree model, i.e., the modified Toufar model, was utilized. The permeability of the bedding layer for various water levels, bedding layer thicknesses, and amounts of dust was calculated. The permeability for a small water level drop was also plotted to evaluate the effect of dust on the bedding layer clogging. RESULTS: It was observed that a water level of 100 mm, bedding depth of 70 mm, and dust amount of 0.3 g result in a stable permeability condition with high repeatability. The relationship between the minimum dust amount and surface clogging of the bedding layer was suggested based on the evaluation of the volumetric calculation of the particle and void and the permeability change in the test. CONCLUSIONS: The test procedure to determine the minimum water level, bedding thickness, and dust amount was successfully proposed. The mechanism of clogging on the surface of the bedding layer was examined by relating the volumetric characteristics of dust to the clogging surface.
        4,200원
        13.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate the performance of road stone block pavements using APT (Accelerated Pavement Testing), which can evaluate the short-term pavement performance of a pavement structure for a given traffic load. METHODS : The performance of stone block, concrete block, and asphalt (modified SMA) pavements were evaluated according to the cumulative equivalent load by using APT. The FWD (Falling Weight Deflectometer) test was used to analyze the deflection per unit load. In addition, the plastic settlement was analyzed by transverse profile measurement. RESULTS: The results of the APT of about 197,000 ESALs (Equivalent Single Axle Loads) show that there were no damages in the stone block, concrete block, and asphalt pavement, such as breakage of stone or concrete block, cracking of asphalt, deflection, and plastic settlement of the wheel-pass section. It was analyzed that the bearing capacity of each pavement section did not decrease sharply with increase in cumulative ESAL. The results of plastic settlement analysis show that in the case of asphalt pavement, the plastic settlement steadily progressed from the beginning of the APT, and a settlement of about 4.76 mm occurred. In the case of concrete block and stone block pavements, no significant change occurred after the initial stabilization step, and plastic settlement of about 1.01 mm and 0.17 mm occurred for the concrete block and stone block pavements, respectively. CONCLUSIONS : As a result of the analysis of the bearing capacity and plastic settlement after the APT, the performance of stone pavement was found to be similar to that of asphalt pavement and concrete block pavement. Therefore, it is concluded that stone pavements are applicable for the road pavement system.
        4,000원
        16.
        2017.09 구독 인증기관 무료, 개인회원 유료
        4,000원
        17.
        2017.09 구독 인증기관 무료, 개인회원 유료
        4,000원
        18.
        2017.09 구독 인증기관 무료, 개인회원 유료
        4,000원
        19.
        2017.09 구독 인증기관 무료, 개인회원 유료
        4,000원
        20.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS: Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS: The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS: In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.
        4,000원
        1 2