검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        1.
        2018.05 서비스 종료(열람 제한)
        현재 우리나라 환경부에서 발간하는 ‘전국 폐기물 발생 및 처리현황’에 의하면 소각재의 구분은 ‘소각재’, ‘연소재’로 구분되어 있으며 ‘사업장배출시설계폐기물’ 항목으로 집계되고 있다. 소각재 및 연소재의 발생 현황을 살펴보면 연소재의 경우 최근 5년간의 발생량은 큰 변화 없이 약 8,000천톤 내외로 일정한 양을 보였지만, 소각재는 매년 증가경향을 보였으며 2010년 약 1,667천톤에서 2014년 약 3,054천톤으로 두 배정도가 증가하였다. 또한, 2014년 기준 소각재의 발생비율은 소각재 및 연소재의 총 발생량(11,410.3천톤) 중 26.8%를 차지하고 있다. 발생하고 있는 소각재의 재활용은 폐기물종류 및 업종에 따라 다르지만, 일반적으로 비산재는 중금속의 유해특성이 높아 재활용이 극히 제한적이고, 바닥재는 상대적으로 유해성이 낮아 재활용 가능성이 높아 다양한 용도로 재활용이 가능하다. 본 연구는 최근 자원순환법 제정, 폐기물관리법 개정 등 환경부의 재활용활성화 정책을 적극 추진하고 있고, 바닥재가 경량골재, 재활용 벽돌, 아스팔트 채움제 등으로 다양하게 재활용되고 있는 상황을 고려하여 중금속 용출특성과 물리・화학적 특성 중심으로 제지소각바닥재에 대한 재활용의 용도 및 방법을 다양화시키기 위한 목적이 있다. 따라서 본 연구에서는 국내 7개 제지업체에서 발생하는 제지소각바닥재의 중금속 용출특성과 물리・화학적 특성을 중심으로 석탄재와 비교분석하였다. 그 결과 석탄재의 수분 및 강열감량에 대한 재활용 환경기준은 없으나, 재활용 제품 품질기준을 제시하고 있고, 제지소각재의 수분과 강열감량은 석탄재 재활용 제품의 품질기준을 만족하는 경우(유동상식)와 그렇지 않은 경우(스토커식)로 나타났다. 중금속용출은 전 항목 지정폐기물, 바닥재 재활용, 요업제품 원료기준의 용출기준을 모두 만족하였으며, 석탄재와 차이가 거의 없었다. 화학성분은 석탄재와 비교하였을 때 비슷한 범위를 보였지만, 재활용 제품 품질기준을 만족하는 경우(유동상식)와 그렇지 않은 경우(스토커식)로 나타났다. 이와 같이 유동상식에서 배출된 제지소각 바닥재의 물리화학적 특성, 중금속 용출농도가 석탄재와 큰 차이가 없고, 품질기준을 만족하는데도 불구하고 재활용이 활성화되어있는 석탄재와 비교하였을 때 제지소각 바닥재는 상대적으로 재활용의 제약을 받고 있는 것으로 보인다. 본 연구결과 유동상식에서 배출된 제지소각 바닥재는 「자원의 절약과 재활용촉진에 관한 법률」 별표 4에 제시되어 있는 석탄재의 재활용용도 중 콘크리트 및 시멘트 제품(콘크리트 혼화재, 시멘트 및 시멘트 클링커 제조 원료)으로서 재활용이 가능할 것으로 평가되며, 일부 품질기준을 충족시키지 못하는 경우(스토커식), 소각로 방식을 유동상식으로 변경할 경우 품질기준을 충족하는 것이 가능할 것으로 보인다.
        2.
        2017.11 서비스 종료(열람 제한)
        현재 우리나라 환경부에서 발간하는 ‘전국 폐기물 발생 및 처리현황’에 의하면 소각재의 구분은 ‘소각재’, ‘연소재’로 구분되어 있으며 ‘사업장배출시설계폐기물’ 항목으로 집계되고 있다. 소각재 및 연소재의 발생 현황을 살펴보면 연소재의 경우 최근 5년간의 발생량은 큰 변화 없이 약 8,000천톤 내외로 일정한 양을 보였지만, 소각재는 매년 증가경향을 보였으며 2010년 약 1,667천톤에서 2014년 약 3,054천톤으로 두 배정도가 증가하였다. 또한, 2014년 기준 소각재의 발생비율은 소각재 및 연소재의 총 발생량(11,410.3천톤) 중 26.8%를 차지하고 있다. 발생하고 있는 소각재의 재활용은 폐기물종류 및 업종에 따라 다르지만, 일반적으로 비산재는 중금속의 유해특성이 높아 재활용이 극히 제한적이고, 바닥재는 상대적으로 유해성이 낮아 재활용 가능성이 높아 다양한 용도로 재활용이 가능하다. 본 연구는 최근 자원순환법 제정, 폐기물관리법 개정 등 환경부의 재활용활성화 정책을 적극 추진하고 있고, 바닥재가 경량골재, 재활용 벽돌, 아스팔트 채움제 등으로 다양하게 재활용되고 있는 상황을 고려하여 중금속 용출기준을 중심으로 바닥재에 대한 재활용의 용도 및 방법을 다양화시키기 위한 목적이 있다. 따라서 본 연구에서는 중금속 용출기준으로 제지소각 바닥재를 고경량골재, 재활용 벽돌, 아스팔트 채움제로서 재활용시 유해성의 여부를 검토하였다.
        3.
        2017.05 서비스 종료(열람 제한)
        전 세계적으로 지속적인 화석연료의 사용으로 인하여 화석 연료가 고갈되고 있을 뿐만 아니라 화석 연료를 사용하면서 발생하는 환경오염 때문에 대체에너지를 찾는데 많은 연구가 진행되고 있다. 이와 더불어 정부는 신재생에너지 보급을 늘리기 위하여 노력하고 있으며, 국내 연간 신재생에너지 생산량 중 폐기물 및 바이오매스에 의한 신재생 에너지 보급률이 약 70% 이상을 차지하고 있다. 특히, 국내에서 발생되는 폐기물은 높은 재활용률 덕분에 가연분 함량이 높아 열 회수 시설에 적용 시 화석원료의 대체제로 사용 가능성이 크다고 할 수 있다. 그러나 폐기물 고형 연료화 시설의 경우 반입량 대비 30 ~ 45%의 비율로 잔재물이 배출되어 매립되거나 일부는 소각시설에 의해 처리되고 있는 실정이다. 특히 이를 그대로 매립 하였을 경우 오염부하를 증가시킬 수 있으며, 매립에 의한 처분비용으로 전체 시설 운영비의 약 20%가 소요되는 것으로 알려져 있다. 따라서 본 연구는 폐기물 고형 연료 잔재물을 이용한 소각 공정에서 적용하였으며 이러한 공정에서 발생한 바닥재를 보도나 광장의 포장에 사용되는 인터로킹 블록으로 활용하는 방안을 마련하였다. 이에 바닥재에 대한 기초특성분석을 하고 혼합된 벽돌의 흡수율, 휨강도, 압축강도, 치수 등을 분석하여 바닥재 혼합비에 따른 블록 특성 변화를 관찰하였다.
        4.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        Recycling of incineration ash generated from domestic waste incinerators is important from environmental and energy conversation aspects. The main components of bottom ash are CaO, Al2O3, SiO2, P2O5, MgO, and Fe2O3, similar to geological components. However, it also contains heavy metal ions such as Cu2+, Pb2+, and Cr6+. The ash material was sintered at 1100 ~ 1150oC by adding pink kaolin to stabilize those heavy metals. The study analyzed the crystal phase and absorption rates of the sintered material for application as a sub-base layer material for roads and conducted tests for the requirements for sub-base layer materials for roads, such as CBR test, quantity of abrasion, and liquid limit. Considering the plasticity, water absorption, and compressive strength of the road base, the mixture with 76wt% bottom ash and 24wt% pink kaolin after sintering at 1,120oC, showed CBR test result of 33.0, quantity of abrasion of 30.3, and liquid limit of NP (no plasticity). These result indicated the possibility of using bottom ash as a sub-base layer material, which satisfied requirements of the standard specification for road construction.
        5.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to analyze the physicochemical characteristics of bottom-ash recycling from municipal solid waste incineration (MSWI) and investigate the possibility of the use of bottom ash for Lightweight Aggregate for Structural Concrete and Bottom Ash Aggregate for Road Construction according to Korean Industrial Standards (KS). Samples were taken from the MSWI bottom ash collected at the resource recovery facilities “A” and “B.” In the results, both samples did not satisfy the criteria of the particle sizes. In particular, the two samples failed to comply with the physical and chemical characteristics criteria of the Lightweight Aggregate for Structural Concrete. On the other hand, both bottom ash samples met the physical characteristics criteria of the Bottom Ash for Road Construction. Therefore, the recycling of Bottom Ash Aggregate for Road Construction can be more a suitable method for recycling, provided that proper pre-treatment as a screening process for bottom ash is performed.
        6.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        According to a report ‘2012 Present Condition of National Household Refuse Resource Recovery Facility’, about 582,178 tons/year of household refuse were processed in the incineration plant, and 465,087 tons/year of bottom ash and 117,091 tons/year of fly ash were produced respectively. As incineration ash contains many kind of heavy metals such as soluble salt, copper and lead, it may lead to the leaching potential of heavy metals according to the environmental change, so it requires special care in landfill and recycling. In this study CO2 was injected into the bottom ash, so that environmental stability such as leaching of heavy metals was reduced and increased the possibility of CO2 fixation ability of the bottom ash was analyzed. Bottom ash of the household refuse incineration plant of I City was used as the sample of the fixation ability particle size was divided into 3 sections to analyze its components before and after carbonation using XRF. Stability of the sample was identified by the leaching test through KSLT and TCLP, and CO2 fixation ability by the DT-TGA analysis. Test results of the fixation ability shows that stabilization of the bottom ash produced in the household refuse incineration plant by carbonation is evaluated as there is little environmental problem caused by heavy metals when it is utilized into the recycled aggregate, and economic profits can be expected due to securing new agents of the supply and demand for the recycled aggregates, the greenhouse gas emission reduction by CO2 fixation.
        7.
        2015.11 서비스 종료(열람 제한)
        2012년도 ‘전국 생활폐기물 자원회수시설 현황’ 에 따르면 소각장에 약 582,178톤/년의 생활폐기물이 반입되어, 바닥재 465,087톤/년, 비산재 117,091톤/년이 발생된 것으로 나타났다. 소각시설에서 배출되는 소각재는 그레이트 상에 남아있는 재(grate ash)와 그레이트 하단으로 떨어지는 재(grate siftings)가 포함된 바닥재(bottom ash) 그리고 폐열 보일러 재와 배출가스 비산재 및 부산물을 포함하는 비산재로 분류된다. 소각재에는 많은 양의 용해성 염과 구리, 납 등의 중금속을 함유하고 있어 환경의 변화에 따라 2차적으로 높은 중금속의 용출가능성을 초래할 수 있으므로 매립 및 재활용 시 주의가 요구되고 있다. 한편 생활폐기물 소각장에서 발생되는 바닥재는 주로 철, 유리, 도자기 등 재활용 가능한 성분으로 구성되어 있지만 일반폐기물로 분류되어 매립되고 있는 실정이다. 반면에 유럽의 독일, 덴마크, 네덜란드 등은 고형화, 세척, 숙성 등의 처리를 통해 바닥재를 도로 건설의 경량 골재로서 이용하거나 아스팔트 또는 콘크리트에 사용하는 등 발생된 바닥재의 60 ~ 90%를 재이용하고 있다. 본 연구에서는 ‘한국 지질자원 연구원 프론티어 무기성 폐기물의 복합처리를 통한 토건 재료화 연구’ 의 내용을 바탕으로 바닥재로부터의 중금속 용출 저감 등 환경적 안정성을 증진시키기 위한 방법으로서 CO2가스 주입을 통한 바닥재의 안정화 처리를 사용하였다. 이에 따른 중금속의 용출 결과 변화를 우리나라 폐기물 공정법상의 용출 시험법 KSLT(Korea Standard Leaching Test)와 미국 EPA의 TCLP(Toxicity Characteristic Leaching Procedure)에 의해 비교 하였으며, 바닥재 재활용에 의한 토양으로의 중금속 용출 영향을 기존 연구에 추가하여 실시하였다. 또한 온실가스인 CO2가스가 바닥재에 고용되는 효과를 실험에 의해 측정하였으며, 이에 따른 부가가치 가능성을 평가하였다.
        8.
        2015.11 서비스 종료(열람 제한)
        우리나라는 1990년대부터 급속한 산업화와 인구증가로 도시 폐기물양이 증가하고 있다. 그 중 생활폐기물은 매립, 소각, 재활용 등의 방법으로 처리된다. 최근 국내 및 국외 선진국에서는 폐기물과 관련된 정책 및 패러다임을 갖고 최대한 폐기물을 자원순환으로 전환하고 이를 통해 매립처리량을 줄여 국토를 효율적으로 이용하는 방향으로 변모하고 있으며, 따라서 매립처리량이 줄어든 대신 재활용과 소각으로 처리되는 생활폐기물의 양이 증가하고 있다. 소각은 반입되는 폐기물의 약 90% 이상의 부피를 감소시켜 처리하는 것으로, 소각시 발생되는 소각재는 비산재와 바닥재로 나뉜다. 비산재는 소각재의 약 20%를 차지하며, 상대적으로 가볍고 다이옥신 및 유해 중금속성분들이 많아서 지정폐기물로 처리되고 있다. 반면 바닥재는 소각재의 약 80%를 차지하며, 대부분 일반폐기물로 매립 처리되고 있는 실정이다. 소각재 중 많은 양을 차지하고 있는 바닥재는 그 성분이 골재 및 자갈의 특성과 유사하다. 따라서, 여러 선진국에서는 바닥재를 도로건설의 경량 골재로 이용하거나 아스팔트 또는 콘크리트의 골재로 재이용하고 있고, 다른 재활용 제품으로의 사용을 위한 다양한 연구가 진행 중이다. 현재 우리나라에서도 정책적 방향에 따라 소각재를 콘크리트 및 건설자재로 재이용하기 위한 연구가 진행되고 있다. 국내에서는 바닥재를 재활용하기 위해서 “폐기물관리법 제14조의 3 제2항 [별표 5의2] 폐기물의 재활용 기준 및 구체적인 재활용 방법” 35항에 보면 바닥재를 재활용하기 위한 기준을 만족하도록 정하고 있다. 본 연구에서는 해당 기준에 있는 항목(강열감량, pH, 염소화합물, 시안화합물, 중금속 용출실험)들을 실험하여 평가하였으며, 기존의 전처리방법(세정, CO2 강제숙성)을 비교 실험하고, 세정+ CO2주입을 동시에 처리하는 방법을 이용하여 재활용기준을 만족하기 위한 최적 방법을 도출하고자 하였다.
        9.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Municipal Solid Wastes (MSW) are disposed of three types (recycling, incineration, landfill). The ashes made after the incineration are also recycled to minimize the volume of waste owing to reducing the amount of landfill. However, MSW incinerations (MSWI) in Seoul are not satisfied with the policy of Korea as a result of experiments about the chemical characteristics of the ash (Ignition loss, pH, Chloride, Cyanide, metals leaching). So, according to the policy, the MSWI in Seoul must be pretreated so as to recycle the MSWI. There are many pretreatments, three pretreatments (washing, weathering, CO2 aging) of which are selected through the literature review. Through Washing, the value of pH and chloride decrease. The optimal ratio (S/L) and time of Washing treatment is 1 : 10 (S/L) and 60 minutes, respectively. The CO2 aging method compensates the defect of weathering method which is required to react long-period time. After CO2 aging, pH and some Heavy metals decrease. So, We will compare and evaluate pre-treatment methods and we find the best method or new method.
        10.
        2013.11 서비스 종료(열람 제한)
        제4차 전국폐기물 통계조사(‘13.3, 환경부)에 따르면 현재 국내에서는 년간 1,593천톤의 소각재가 발생하며 그중 대부분인 1,227천톤(약 77%)은 단순매립으로 처리되고 있고, 단지 366천톤(약 23%)의 소각재만이 재활용되고 있다. 그러나 최근 수도권 자치단체의 “매립폐기물 제로화” 선언, 매립부담금, 순환자원 사용 확대 등을 주요골자로 하는 “자원순환사회 전환촉진법” 제정 등이 추진되고 있어 그 어느 때 보다도 더욱 새로운 대안모색이 절실히 요구되고 있다. 본 연구는 대부분 매립에 의존하던 생활폐기물 소각 바닥재를 매립지내 매립가스 소각후 발생되는 배가스를 이용하여 탄산화과정을 통해 지구온난화물질인 CO2는 소각재에 포집하고 소각재는 유해 중금속의 용출이 억제된 순환골재로 재활용하고자 하는 실증연구로 진행되었다. 반입된 소각재는 불순물 제거, 입도선별, 철분류 등의 전처리를 거친후 2차 입도선별을 통하여 100 mesh 이상의 큰 입자는 입자표면에 탄산염층을 생성하는 건식 탄산화 공정과 탈염 공정 등 안정화 과정을 거쳐 순환골재로 재생되며, 생산된 순환골재의 도로용 보조기층재로서의 적합여부를 확인하기 위하여 한국건설생활환경시험연구원에 순환골재 시험분석을 의뢰한 결과 도로보조기층용 순환골재(KS규격 KS F 2474)와 비교한 결과 기준에 적합한 것으로 확인되었다. 본 연구는 환경부 차세대 핵심환경기술 개발사업의 연구비 지원으로 수행되었으며, 이에 감사드립니다.
        11.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        The amount of municipal solid waste (MSW) is steadily increasing leading to an urgent need for the effective treatment of these wastes. Incineration is one of the methods for the treatment of these solid wastes. The bottom ashes produced from the incineration process are very unstable at standard atmospheric conditions, so there is need for process to alleviate the ash problems. In this study, the bottom ashes were first converted into the slurry form and then the slurry was made to react with CO2 to produce the carbonates. This carbonate process by using bottom ashes and carbon dioxide will be source recovery technology from waste material and, moreover, will also help to reduce the amount of CO2 emissions. The aim of this study was to determine the optimum conditions for the precipitation of CaCO3 using Aspen plus modeling program. The temperature and pressure for the precipitation of CaCO3 process were varied 25 to 500oC and 1.05 bar to 90bar, respectively. For producing the slurry, the optimum ratio of H2O to calcium oxide was determined to be 10 : 1. And the optimum precipitating conditions for calcium carbonate process system were found to be at 35 bar - 210oC.
        12.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        Recycling the bottom ash from MSWI (Municipal solid waste incinerators) ash is required to reduce the secondary pollution. We characterized the bottom ash and investigated the possibility of application for subsidiary ceramic raw materials. Major components of bottom ash are analyzed as CaO, Al2O3, SiO2, P2O5, MgO, Fe2O3, which are the same components of the earth’s crust. This similarity of components implied that bottom ash could be recycled as ceramic products through systematic treatment. Considering the plasticity and water absorption results, the ceramics, which are the mixture with 74 wt % bottom ash and 26 wt% Pink Kaolin, showed 1.39% water absorption after sintering 1150oC for 1h. This result indicated the possibility of recycling of bottom ash for subsidiary ceramic raw materials.
        1 2