점차 강화되는 배출가스 규제와 적은 연료로 많은 거리를 주행할 수 있는 고효율 자동차에 대한 요구로 에너지소비효율에 대한 관심이 점차 늘어나고 있다. 국내의 에너지소비효율은 도심주행모드와 고속도로 모드를 주행하여 복합연비로 산정하고 5-Cycle 보정식을 이용하여 최종 에너지소비효율을 표시하고 있다. 에너지소비효율의 경우 카본발란스법에 의하여 산출되는데 이때 배출가스에 의해 계산이 됨에 따라 연소에 사용되는 연료는 자동차 성능과 에너지소비효율에 매우 중요한 역할을 하게 된다. 자동차 연료의 경우 국내에서는 석유 및 석유대체연료 사업법 품질기준에 따라 국내에 유통되고 있는데 정유사의 정제 방법이나 원유에 따라 품질 기준 내에서 물성 차이를 보일 수 있다. 일정 품질기준을 정하고 있음에 따라 연료별 큰 차이는 나지 않을 것으로 보이나 자동차의 성능에는 영향을 미칠 수 있어 그에 따른 연구가 필요한 실정이다. 따라서, 본 연구에서는 시중에서 유통되고 있는 연료 중 여름철에 판매되는 경유를 정유사 직영점을 통해 구매하였으며, 각 시료별 물성을 분석하고 그에 따른 에너지소비효율을 측정하였다. 에너지소비효율의 경우 현행 경유 자동차의 에너지소비효율 산정식과 휘발유 에너지소비효율에서 사용되는 산출식을 이용하여 물성 적용에 따른 변화를 살펴보았다. 그 결과 시료별 밀도는 최대 약 0.9%의 차이를 보였으며, 순발열량은 1.6%의 차이를 보였으며, 현행 에너지소비효율 산출 결과에서는 도심모드에서 약 1%, 고속모드에서 1.4% 차이를 보였다. 휘발유 산출식을 이용한 산출에서는 현행 에너지소비효율 산출때 보다 약 6%정도 낮은 수치를 보였으며, 각 시료별 에너지소비효율은 최대 도심과 고속에서 최대 약 1.4%의 차이를 보였다.
Perfluorinated sulfonic acid (PFSA) ionomers have been widely used for renewable energy generation, including polymer electrolyte fuel cells (PEFCs), owing to their excellent resistance to harsh chemicals and good ion-transport properties. PFSA materials experience critical chemical decomposition to radical attacks, and fast hydrogen crossover leading to fairly reduced electrochemical performances, when they are used as membrane materials. Similar chemical degradation also occurs in PEFC electrodes containing PFSA ionomer binders used as both mechanical supporters and proton conductors and shortens PEFC lifetime. In this study, several approaches based on their morphological rearrangement to overcome these economical and technical issues are proposed. They include pore-filling membrane formation, nanodispersion, and their combination.
Recently, Korea’s municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery ,which is conducted at temperatures ranging from 200 to 350°C with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately 200°C.
우리나라에서 발생하는 사용후핵연료를 CANDU형과 PWR형 2종류로 구분한다. PWR형 사용후핵연료의 경우 적절한 공정을 거쳐 원료물질로 다시 사용할 수 있는 물질을 많이 포함하고 있어 재활용 공정을 고려할 수 있다. CANDU형 사용후핵연료는 천연 우라늄을 원료물질로 사용하고 있어 재활용 가능성이 거의 없으므로 직접 처분을 고려하고 있다. 본 논문에서는 PWR형과 CANDU형 사용후핵연료 모두를 직접 처분하는 개념 으로 개발한 한국형 사용후핵연료 처분시스템을 바탕으로 CANDU형 사용후핵연료 처분 시스템을 향상시키 는 방안을 도출하고자 하였다. 이를 위하여, 현재 원자력발전소에서 사용하고 있는 사용후핵연료 60 다발 (Bundle) 용량의 저장바스켓을 포장·활용하는 방안으로 처분용기 개념을 개선하였다. 이들 개선한 처분용 기를 기반으로 하여 사용후핵연료의 심지층 처분시스템에 있어서 주요한 제한요건인 폐기물로부터 발생된 열로 인하여 완충재의 온도가 100 ℃를 넘지 않도록 하는 요건을 만족시키면서 효율을 향상시킨 처분시스템 개념을 제시하였다. 제시한 처분 시스템 개념들은 장기저장 및 회수성이 용이한 방안을 도입한 개념과 개선 한 처분용기를 1개 처분공에 2단으로 처분하는 것으로서 이들 개념을 기존 한국형 처분시스템과 효율성 측면 에서 비교?분석하였다. 본 연구를 통하여 얻은 CANDU 사용후핵연료 처분개념은 단위면적당 열효율, Udensity, 처분면적, 굴착량, 완충재 및 폐쇄 물질량을 30∼40 % 까지 효율을 향상시킬 수 있었다.
전 세계적으로 에너지 소비가 급속하고 늘고 있는 추세이며, 화학연료를 이용한 전기 생산은 기후변화를 야기시키므로 새로운 형태의 친환경적인 발전 시스템의 개발이 매우 중요한 현안으로 떠오르고 있다. 전력수급의 많은 부분을 원자력과 화력발전에 의존하고 있는 우리나라의 경우 증가하는 전력 수요를 가스터빈을 이용한 복합발전이나 열병합 발전이 분담을 해야 하므로 가스터빈 관련 연구 개발은 매우 중요하다고 할 수 있다. 최근에는 분산발전에 대한 관심이 고조되면서 이에 적합한 동력원으로 고려되고 있는 마이크로 터빈 및 이에 대한 응용시스템 연구개발이 국내외에서 활발히 수행되고 있다. 마이크로 가스터빈은 중대형 가스터빈에 비해 개발기간이 짧고 개발비 규모가 작아 세계시장에서도 경쟁력있는 상품이 될수 있을 것으로 판단된다. 본 연구는 60KW 출력의 마이크로 가스터빈을 대상으로 메탄/수소, 메탄/산소-수소 혼합기체를 혼합한 연료에 대한 연소 특성 및 내부 열유동을 수치해석적 연구를 통하여 검토하였다. 수소 및 산소-수소 혼합연료의 체적분율을 변화시켜 변수연구를 수행하였다. 연구 결과를 살펴보면 연료 중 수소 및 산소/수소 기체의 체적분율을 높일수록 연소기 내부의 primary zone의 화염온도가 현저히 상승하며 연소기 내부의 고온영역이 넓게 분포되는 것을 볼 수 있다.이는 수소나 산소-수소 기체로 대체했을 때 수소의 빠른 연소속도에 의해 단시간에 화염온도의 상승을 이룰수 있고 수소의 강한 반응성과 높은 열확산성으로 인하여 순신간에 가스터빈 내부의 연료와 공기의 난류혼합을 활발하게 하여 가스 터빈의 효율 향상에 일조한다는 것이다. 수소비율에 따라 가스터빈의 연소성능과 관련이 있는 primary zone의 평균온도, 출구의 평균온도, 출구에서의 온도의 편차비(pattern factor)와 같은 결과를 검토하여 의미있는 결과를 도출하였다. 향후 최적 운전을 위한 적절한 연료의 혼합비율은 가스터빈의 형상 및 규모 등 다양한 변수를 고려하여 도출하는 것이 필요할 것으로 판단된다.
전 세계적으로 자원의 고갈과 온실가스로 인한 기후변화가 지구의 환경을 위협하는 요인으로 작용하고 있다. 이에 국내에서는 폐기물의 재활용을 촉진하고, 더 높은 부가가치를 부여하기 위한 기술・정책적 노력들이 이루어지고 있다. 그 중 하나로 생활폐기물을 기계적 선별공정과 생물학적 처리 공정이 결합된 MBT(Mechanical Biological Treatment) 시설이 도입되었다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 SRF(Solid Refuse Fuel)로 생산할 경우 에너지 자원의 대체제로 사용 가능성이 크다고 판단된다. 이에 본 연구에서는 국내에서 생산되는 SRF에 대하여 기초특성분석을 실시하고 효율적인 열에너지 회수를 위해 연소실험을 진행하였다. 시료의 기초특성분석결과, 수분, 회분함량이 낮고 탄소성분과 발열량이 높게 나타났다. 연소 특성 및 오염 물질의 발생 특성을 파악하기 위하여 고정층 반응기에서 공기비 1.8~2.6 범위에서 실험을 진행하였다. 뿐만 아니라 각 공기비에서의 배가스 성분을 연소가스측정기(MK9000)를 이용해 그 특성을 알아보았으며 가스상 오염물질 배출특성을 알아보기 위하여 오염물질인 HCN, HCl 에 대해 분석을 실시하였다. 배가스 특성에서 CO의 농도가 거의 0%로 나타난 것으로 보아 완전연소가 잘 일어나고 있음을 판단 할 수 있었다. 또한 배출된 가스상 오염물질의 경우 배출 허용기준(HCl 15ppm, HCN 5ppm)을 모두 만족하는 것으로 나타났지만 NOx의 경우, 배출 허용 기준(80ppm)에 비해 약간 높은 값을 보였다. 모든 조건을 고려하였을 때 연소 반응이 활발히 일어나는 것을 알 수 있었지만 SRF를 연소공정에 적용시 추가적인 NOx 제어 시설이 필수적으로 설치되어야 할 것으로 판단된다.
미생물연료전지(MFC)는 폐기물 속에 포함된 유기물을 전기로 전환하는 시스템으로 스케일업(scale-up)과 전압 및 전류 향상을 위해서는 미생물연료전지의 스택(stack)이 필요하다. 미생물연료전지의 전압을 향상시키기 위해서는 직렬연결, 전류를 증가시키기 위해서는 병렬연결이 필요하며 각 연결방법에 따른 유기물 제거와 전력생산의 관계는 폐기물 처리와 에너지 전환 효율적인 측면에서 중요한 인자이며 이에 대한 연구는 미비한 실정이다. 본 연구는 2개의 미생물연료전지(MFC 1, 2) 셀을 미연결, 직렬 연결, 병렬 연결하였을 때 유기물 변화와 전류 발생량을 모니터링한 후 이에 따른 쿨롱효율을 분석하여 각 연결에 따른 유기물 변화와 에너지 전환 효율에 따른 효과적인 스택 방법을 제시하고자 한다. 미연결된 미생물연료전지(MFC unit 1, 2), 직렬 연결된 미생물 연료전지(MFC 1-2), 병렬연결된 미생물연료전지(MFC 1//2)의 하루 동안 변화된 화학적 산소 요구량(COD)는 각각 163mg, 213mg, 194mg으로 직렬 연결된 미생물연료전지에서 가장 높은 유기물 제거율을 보였다. 이 때 발생된 평균 전류는 각각 2.13mA, 2.83mA, 4.14mA로 병렬 연결된 미생물연료전지에서 가장 높은 전류 값을 보였으나 유기물 제거량과 전류 발생량으로부터 계산된 쿨롱효율은 각각 19.8%, 10.5%, 15.2%로 미연결된 미생물연료전지에서 가장 높은 쿨롱효율 값을 나타났다. 비록 각기 다른 유기물 변화, 전류 생산, 쿨롱효율 값을 보였지만 각 연결에 따른 미생물연료전지의 성능을 측정하였을 때 비슷한 전력 값이 생산된 것을 확인할 수 있었으며 이는 각 연결 방법에 따른 에너지 손실이 다르다는 것으로 추측할 수 있다. 이러한 결과를 바탕으로 미생물연료전지 스택시 병렬연결 방법이 폐기물 내에 유기물 처리와 에너지 전환 효율 적인 측면에서는 가장 효과적인 방법이라고 판단된다.
In this study, hydrothermal carbonization is used to recover energy from sludge. This hydrothermal carbonization is a feasible sustainable energy conversion technology to produce biofuel for renewable energy. The experiments were conducted at 170oC up to 220oC for a 30-min holding period to determine the optimum conditions for hydrothermal carbonization in a lab-scale reactor to apply to a scale-up reactor (1 ton/day). The biochars from sludge were assessed in terms of dewaterability characteristics and fuel properties. The results showed that the optimum temperature of labscale hydrothermal carbonization was 190oC. The 1 ton/day hydrothermal carbonization pilot plant operated at 190oC. The biochar had higher energy content but the char yield sharply decreased. Therefore, an energy of about 49% could effectively be converted from sludge biomass. This sludge from municipal wastewater treatment is a potential energy resource because sludge is composed of organic substances.
폐기물을 이용한 재활용제품은 자원의 절약과 재활용촉진에 관한 법률에 폐목제 고형연료(WCF), 폐플라스틱 고형연료(RPF), 폐타이어 고형연료(TDF), 생활폐기물 고형연료(RDF)로 규정되어 있다. 이중에서 폐플라스틱 고형연료(RDF)의 저위발열량은 6,000 kcal/kg 이상으로 명시되어 있다. 폐플라스틱 고형연료(RDF)의 제조과정에서 발생되는 잔류물은 일부가 공정으로 재투입되기도 하지만 경제성과 공정의 효율적인 운영을 이유로 대부분 폐기처분되고 있다. 이렇게 폐기처분되는 폐플라스틱 고형연료(RDF) 잔류물이 보유하고 있는 물리 화학적 에너지는 생활폐기물과 비교해도 손색이 없을 정도이다. 본 연구에서는 두 종류의 폐플라스틱 고형연료(RDF) 잔류물을 이용하여 운전 조건별로 생산되는 합성가스의 특성을 비교하였다. 실험에 사용된 폐기물 시료의 습윤 저위발열량은 각각 5,228 kcal/kg, 4,454 kcal/kg으로 분석되었다. 운전 조건으로는 폐기물 투입속도, 등가비(Φ), 반응영역의 온도이며 조건별로 Test #1부터 #3까지 구분하였다. 실험 결과 합성가스 조성(CO+H2)은 56.3% ~ 63.1%, 합성가스 유량은 124.2 Nm³/h ~ 138.8 Nm³/h, 냉가스효율은 57.4% ~ 63.9%로 나타났다. 등가비가 증가할수록 합성가스의 조성이 증가하였으며 반응영역의 온도가 감소하는 것으로 분석되었다.