In order to understand basic data for improving the fishing system and fishing vessel structure in coastal improved stow net fishery, a questionnaire survey and on-site hearing were conducted from May 10 to June 11, 2019 to analyze opinions on the improvement of operation status and fishing vessel structure. The questionnaire survey consisted of ten questions on the operation status of coastal improved stow net fishery and six questions on the improvement of fishing vessel structure, and the results of each question were analyzed by the region, the captain’s age, the captain’s career and the age of fishing vessel. As a result of analyzing opinions on the operation status of the coastal improved stow net fishery, it was found that the average time required for casting net was 32.8 to 33.0 minutes and that the average time required for hauling net was 41.0 to 42.2 minutes which took 10 to 12 minutes more than for casting net. The most important work requiring improvement during fishing operation (the first priority) were ‘hauling net operation,’ ‘readjustment and storage of fishing gear,’ and ‘fish handling’ and the hardest factor in fishing management were in the order of ‘reduction of catch,’ ‘labor shortage’ and ‘rising labor costs.’ The most institutional improvement that is most needed in coastal improved stow net fishery was an ‘using fine mesh nets.’ Most of the respondent to the questions on the experience in hiring foreign crews was ‘either hiring or willing to hire foreign crews,’ and the average number of foreign crews employed was found to be 2.3 to 2.4 persons. The most important reason for hiring (or considering employment) foreign crews was ‘high labor costs.’ The degree of communication with foreign crews during fishing operation were ‘moderate’ or ‘difficult to direct work.’ The most important problem in hiring foreign crews (the first priority) was an ‘illegal departure.’ As the survey results on the opinion of structural improvement of coastal improved stow net fishing vessel, the degree of satisfaction with fishing vessel structure related to fishing operation was found to be somewhat unsatisfactory, with an average of 3.3 points on a five-point scale. The inconvenient structure of fishing vessel in possession (the first priority), the space needed most for the construction of new fishing vessel (the first priority) and the space considered important for the construction of new fishing vessel (the first prioprity) was a ‘fish warehouse.’ The most preferred equipment for the construction of new fishing vessel were ‘engine operation monitoring’ and ‘navigation safety devices.’ The average size (tonnage class), the average horse power and the average total length of fishing vessel for proper profit and safety fishing operation was between 13.8 and 14.0 tonnes, 808.3 to 819.5 H.P. and 23.4 to 23.5 meters, respectively. The results of the operation status of coastal improved stow net fishery and the requirement for improving the fishing vessel structure are expected to be provided as basic data for reference when we build or improve the fishing vessel.
In this study, the risk factors of coastal purse seine fisherman were analyzed through a survey of fishery workers of coastal purse seine fishery and the accident compensation insurance data of the fisheries workers of the National Federation of Fisheries Cooperatives (NFFC). The classified fishing operation accident data was analyzed through 4M (Man, Machine, Media, Management) model of the National Transportation Safety Board (NTSB) and the accident prevention measures were presented using Harvey's 3E (Engineering, Education, Enforcement) model. The rate of accidents on coastal purse seinens each year was 75.8‰, 36.7‰ and 74.8‰ from 2015 to 2017. The accident frequency resulting from slipping was the highest, and the risk of a contact with gear was low. When comparing each insurance data, the average value of the contact with gear accident was the highest. This research result is expected to be important data in identifying and preventing safety hazards of coastal purse seiner fisherman in the future.
The purpose of this study is to estimate the resource recovery effect and the economic effect of the fishermen by the fisheries vessel buy-back program. First, this study standardizes the fishing efforts of coastal gill net, coastal trap, and coastal composite fisheries using Gavaris general linear model. Second, the resource evaluation is performed by using vessel buy-back program data, and also the CYP model based on exponential growth function is applied. In order to derive the effect of the vessel buy-back program, the MSY with the vessel buy-back program is compared with the MSY without the vessel buy-back program. Finally, we compare and analyze producer surplus under the equilibrium of the MEY and the OA using bioeconomic model. In conclusion, the vessel buy-back program has shown an increase in resource growth and economic improvement for the remaining fishermen. The result shows that the remaining fishermen are able to obtain an increase in producer surplus of about 53% due to the vessel buy-back program under equilibrium levels of the open access and the maximum economic yield.
Due to the environmental changes such as decreasing and aging fishing population and increasing imported marine products, improvement of fishing business competitiveness has become one of important issues. This study aimed to analyze the coastal fishing business units in Busan region and compare their business performances in order to find out success factors. The logistic regression analysis between 4 determination factors of competitiveness and business performances showed that the ship tonnage in the factor conditions, catch of species of fishing types’kg per price in the demand conditions, cooperative sales ratio in the related & supporting industries, and net per cost in the firm strategy, and structure & rivalry had the positive(+) impacts on business performances.