In electric vehicles, the core is a secondary cell battery. Raw material is pulverized by the grinding disc in the Classifier Separator Mill (CSM) and rises through the Classifier Wheel. Both require characteristics to withstand high-speed rotation, including abrasion, corrosion, and shock. Our study analyzes the impact of RPM and heat source on temperature, convergence, and durability. In conclusion, high heat increases flow, while high RPM reduces the maximum temperature but may harm durability. Proper RPM settings enhance durability.
In this study, numerical modeling on the gas flow and off-gases in the low temperature carbonization furnace for carbon fiber was analyzed. The furnace was designed for testing carbonization process of carbon fibers made from various precursors. Nitrogen gas was used as a working gas and it was treated as an incompressible ideal gas. Three-dimensional computational fluid dynamics for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The off-gas mass fraction and cumulative emission gas of species were incorporated into the CFD analyses by using the user defined function(UDF). As a results, during the carbonization process, the emission of CO2 was the dominant among the off-gases, and tow moving made the flow in the furnace be uniform.
The shell & tube-type heat exchanger has been frequently used because it shows simple structure, easy manufacturing and wide operation conditions among many heat exchangers. This study aims to investigate the characteristics for thermal flow of coolant and the possibility of damage for tube equipped with shell due to thermal stress. For these purposes, The thermal flow of coolant in tube was simulated using ANSYS-CFX program and thus the behaviors of coolant were evaluated with standard k-ε turbulence model. As the results, as the flow rate of coolant in tube was increased, the mean relative pressure was also increased with quadratic curve, however, as the surface temperature of tube was increased, mean temperature difference was linearly increased. Finally it showed that the damage of tube could be predicted, that is, which tube was the most weak due to thermal stress.
In general, small and medium-sized computer rooms do not have access floors for reasons of increased floor height and increased construction cost. Therefore, the air conditioning method used here applies the method of directly blowing the cold air of the air conditioner into the computer room. In this case, the hot/cold air is not separated, and as the hot air is recirculated, it is re-introduced to the front of the server rack, resulting in a problem that the server cooling efficiency is decreased. In addition, in such a computer room structure, it is difficult to configure and install a containment system. In this study, we tried to understand the problem of the formation airflow in the case of using the existing air conditioning method, and to find a method of configuring the air conditioning environment to improve the cooling efficiency. The purpose of this study was to understand the airflow/temperature distribution in the computer room using the CFD simulation method. In addition, the thermal characteristics of various air-conditioning environments such as the location of the CRAC cold air discharge location, the layout between server rack and CRAC and the containment were reviewed.
IMO에서는 선박으로부터 온실가스 감축을 위해 선박의 에너지효율 증진에 관한 논의를 진행하고 있다. 현재, 선박으로부터 발생되는 폐열을 이용한 ORC 발전 시스템을 적용함으로써 선박으로부터 높은 에너지 변환 효율을 기대할 수 있다. 이 기술은 물보다 더 낮은 온도 범위에서 증발하는 프레온 또는 탄화수소 계통의 유기 매체를 작동 유체로 사용한다. 이를 통해 상대적으로 낮은 저온에서 증기 (기체)를 생성 및 동력을 발생시킬 수 있다. 본 연구에서는 유기 랭킨 사이클인 ORC 발전 시스템에서 냉매와 폐열 사이 열·유동해석 (Analysis of Heat flow)을 3D 시뮬레이션 기법을 이용하여 구조물의 내·외부에 흐르는 유체가 온도 변화, 속도 변화, 압력 변화 및 질량 변화를 통해서 구조물에 어떤 영향을 미치는지를 분석하고자 하며, 동 연구는 이 기법을 이용하여 ORC 발전 시스템에서 냉매와 선박 주기 관의 배기가스로부터 일어나는 열교환기의 열전달을 해석하였다.
In this study, gas flow pattern and temperature distribution in a laboratory scale low temperature furnace for carbonization were numerically analyzed. The furnace was designed for testing carbonization process of carbon fibers made from polyimide(PI) precursor. Nitrogen gas was used as a working gas and it was treated as an ideal gas. Three-dimensional computational fluid dynamics analysis for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The results showed that more uniform velocity profile and axisymmetric temperature distribution could be obtained by varying mass flow rate at the inlets.
The effect of flow direction on heat transfer in water cooling channel of lithium-ion battery is numerically investigated. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that the maximum temperature and temperature difference of battery with Type 1 are the lowest because the heat transfer in the entrance region near the electrode is enhanced. As the inlet velocity is increased, the maximum temperature and temperature difference of battery decreases but the pressure loss increases. The pressure loss in Type 2 channel is the lowest due to the shortest channel length, while the pressure loss with Type 3 or 4 channel is the highest because of the longest channel length. Considering heat transfer performance and pressure loss, Type 1 is the best cooling channel.
In this study, the temperature, the absolute humidity, and the turbulent flow characteristics of exhaust air and supply air in the mixer were studied while changing the shape of the mixer of the white smoke reducing heat exchange system. Using Solidworks, the mixer of the white smoke reduction heat exchange system was created by 3-D model. Also, the mixed flow of supply air and exhaust air inside the mixer under the uniform inlet conditions was computed, using the solidworks flow simulation. Two types of improvement models were selected by using a perforated plate and a guide vane as a turbulent mixing flow control method of the mixer. The mean temperature and mean absolute humidity of the mixture were greatly decreased according to the internal shapes of Case 1, 2, and 3. The temperature difference between the inlet and outlet of the mixer Case 3 was 26℃. The exit temperature and absolute humidity reduction rates of Case 3 were 26.2% and 48.1%, respectively, compared with Case 1.
In this study, the characteristics of the heat flow on SA(supply air) side of the white smoke reducing heat exchange system according to the change of SA velocity were analyzed in the winter condition (outside temperature 0℃). Also, the mixing process of SA and the EA(exhaust air) is presented in the psychrometric chart to confirm the possibility of reducing white smoke. Solidworks flow simulation was used to analyze the heat flow on the heat exchange system under uniform conditions. As the inflow velocity of SA increased, the temperature of SA decreased due to the convective heat transfer improvement due to the active flow in SA system. And the outlet temperature and absolute humidity of the mixing zone decreased significantly. At SA velocity 7 m/s, the outlet temperature and absolute humidity decreased to about 58% and 82%, respectively.
In this study, the CFD analysis was performed by changing the geometry of coil-tube diameter ratio, coil winding number, coil pitch, and cross section of the tube to investigate the heat flow characteristics of forced convection in a helical coil-tube heat exchanger using RSM (Reynolds Stress Model). As a result, the secondary flow was developed in the tube caused by the influence of centrifugal force. It improved the heat transfer on the outer side of the tube, but on the inner side was not performed well. And the temperature rose locally in the tube region. Also the pressure drop in the tube was proportional to the diameter ratio of the coil-tube and the inlet velocity, and it was found that pressure drop and friction factor were inversely proportional. When the coil winding number and coil pitch were increased, it affected heat transfer in the low speed range of 0.1 ~ 0.2 m/s, but did not affect the flow condition after this range.
본 논문에서는 과도한 계산용량이 필요한 초음속 비행체의 비정상 열응답 해석을 수행하기 위한 준-비정상해석 기법을 소개한다. 준-비정상해석 기법은 연성 연계 기법과 복합 열전달 해석기법을 통합한 방법으로 계산시간 단축시키면서 동시에 정확도를 향상시키기 위해 고안되었다. 또한 준-비정상해석 시, 해석 구간을 분할하기 위한 기준시간을 결정하는 알고리즘을 고안하여 준-비정상해석 기법의 정확도를 향상시키고자 하였다. 본 논문에서는 준-비정상해석 기법을 평가하기 위하여 가상의 비행 시나리오에서 열응답 해석을 수행하였으며, 비정상 해석 결과와 비교 검증을 수행하였다. 무딘 물체의 표면 온도 및 정체점의 온도를 통해 각각의 기법의 차이를 도출하였다. 비정상 해석을 통해 도출한 정체점의 온도와 준-비정상 해석을 통해 도출한 정체점의 온도 차이는 11.4% 이내로 높은 정확도를 확보함과 동시에 28배에 가까운 계산시간을 단축시켜 해석 기법의 효율성과 정확성을 확보하였다.
In this study, the heat flow characteristics of wave heat exchanger was investigated by being applied to the white smoke reduction system. Through numerical analysis, the heat transfer and flow characteristics of the wave heat exchanger with the change of inlet condition of air-side and water-side were analyzed. To investigate the temperature, the absolute humidity, heat transfer rate, pressure drop and turbulence characteristics of the wave heat exchanger, the simulation analysis was conducted by using the commercial computational fluid dynamics software (Solidworks Flow Simulation) under uniform flow conditions. As the inflow rate of air decreased and the inflow temperature of water increased, the heat transfer coefficient of the wave heat exchanger decreased. When the experimental conditions of water-side were the same, the air outlet temperature and absolute humidity of the wave heat exchanger increased with increasing inflow rate of air. To reduce the white smoke, the air outlet temperature and absolute humidity of the wave heat exchanger must be reduced. Therefore, the lower the air velocity and the water inflow temperature into the wave heat exchanger, the more effective it is.
The brake systems are composed of brake disc, brake pad and caliper and, these three parts play an important role for braking. In this study, heat fluid analysis is conducted for five different ventilated disc models, and two piece brake disc model separated in rotor and housing is used. In this case, each model has a different number of holes and vent shape. The basic heat flux and braking power equations are applied for the heat fluid analysis. The cooling performance with/without the braking operation is also analyzed for given five models where the material properties and boundary conditions are set to be identical. From our analysis results, it is found that the number of disc holes and ventilated pins strongly influences on the cooling performance.