검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 21

        2.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자기공명영상은 고해상도의 연부조직에 대한 영상정보를 제공하며, 뇌종양 등 연부조직 진단에 활용된다. 본 연구는 합성곱신경망 인공지능을 통해 뇌종양 자기공명영상 분류성능을 확인해 보고자 한다. 4개 종류로 구분된 3264 장의 MRI 데이터 세트(data set)를 이용하였으며, 인공지능 학습을 위해 훈련용 데이터와 시험용 데이터를 9 : 1, 훈련용 데이터의 10%를 검증용 데이터로 구분하였다. 합성곱신경망은 기본 CNN과 VGG16으로 구성하였으며, 학습 평가는 정확도와 손실율로 확인하였으며, 생성된 모델을 통해 분류성능 정확도를 확인하였다. 실험 결과 과적합은 없었으며, 분류성능은 기본 CNN과 VGG16 각각 67%와 80%의 분류성능을 보였다. 도출된 뇌종양 자기공명영상 분류 결과를 통해 자기공명영상과 인공지능 접목에 관한 기초 자료로 사용될 수 있을 것이라 사료된다.
        4,000원
        4.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MRI는 연부조직에 대한 고해상도의 영상을 제공하며 진단적 가치가 매우 높은 영상 검사이며, 디지털 데이터를 이용하여 딥러닝 기술을 통해 컴퓨터 보조 진단 역할을 수행할 수 있다. 본 연구는 딥러닝 기반 YOLOv3를 이용하여 뇌종양 분류 성능을 확인해 보고자 한다. 253장의 오픈 MRI 영상을 이용하여 딥러닝 학습을 진행하고 학습 평가지표는 평균손실(average loss)와 region 82와 region 94를 사용하였으며, 뇌종양 분류 모델 검증을 위해 학습에 사용되지 않은 영상을 이용하여 검출 성능을 평가하였다. 평균손실은 2248 epochs 시 0.1107, region 82와 region 94의 24079 반복학습 시 average IoU, class, .5R, .75R은 각각 0.89와 0.81, 1.00과 1.00, 1.00과 1.00, 1.00과 1.00의 결과값을 도출하였다. 뇌종양 분류 모델 검증 결과 정상 뇌와 뇌종양 각각 95.00%, 75.36%의 정확도로 분류할 수 있었다. 본 연구 결과를 통해 MRI 영상을 활용한 딥러닝 연구 및 임상에 기초자료로 사용될 것이라 사료된다.
        4,000원
        5.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        아시아에서 가장 큰 칼데라 호수인 천지는 해발 약 2250 m의 백두산 정상에 위치한다. 천지는 높은 해발고도 및 바다와 인접한 환경으로 인해 1년 중 6개월 정도가 눈과 얼음으로 뒤덮여 있다. 천지의 수원은 대부분 지하수로부터 유입되기 때문에 수온과 백두산의 화산활동이 밀접한 관련이 있다. 하지만 2000년대에 들어서며 백두산에 많은 화산활동이 관측되고 있다. 본 연구에서는 유럽우주국(European Space Agency: ESA)에서 제공하는 Sentinel-1 위성 영상 자료를 활용하여 백두산의 겨울철 생성되는 얼음의 면적을 분석하였다. Sentinel-1 위성의 후방산란 영상에서 얼음의 면적을 산출하기 위해 질감 분석 기법을 활용하여 2개의 편파영상에서 20개의 Gray-Level Co-occurrence Matrix(GLCM) 레이어를 생성했다. 면적 산출에 사용된 방법은 GLCM 레이어를 Support Vector Machine (SVM) 알고리즘으로 분류하여 영상에서 얼음의 면적을 산출했다. 또한 산출된 면적은 삼지연 기상관측소에서 획득된 기온자료와 상관관계를 분석하였다. 본 연구는 본격적인 장기간의 시계열 분석에 앞서 얼음의 면적을 산출하는 새로운 방법에 대한 대안을 제시하는 근거로서 활용될 수 있을 것이다.
        4,000원
        6.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신 (SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교・분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함 한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.
        4,300원
        7.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기존 온·습도 센서와 여러 가스센서에 의해 측정 및 제어되는 돈사환경제어시스템에 돼지의 체온조 절행동에 근거한 생체정보를 이용하여 외부 환경정보를 보정한다면 보다 정밀한 축사 환경제어를 할 수 있다. 이를 위한 본 연구는 ICT기술을 접목한 스마트돈사의 정밀환경제어를 위한 기초연구로 획득된 이 미지를 바탕으로 돼지의 행동특성을 3가지로 분류하기 위한 영상처리시스템 알고리즘을 제시하고자 한 다. 공시재료는 실험돈사에서 사육되고 있는 육돈용 자돈(F2, 36~40kg) 3마리를 이용하였으며, 영상처 리를 수행하고자 천정에 설치된 카메라를 통해 획득된 이미지를 이용하였다. 영상처리를 위한 프로그램 은 Visual Studio C과 다양한 영상처리를 위해 개발된 오픈 소스 라이브러리인 OpenCV Library를 이 용하여 구현하였다. 행동분류 알고리즘은 각 돼지의 중심점 데이터, 돼지가 차지하는 면적, 돼지 사이 의 거리를 구하고자 전처리를 수행한 이미지를 RGB 색상계에서 YCrCb 색상계로 변환하였으며, 히스토 그램 평활화(Histogram Equalization), cvBlob함수를 사용하여 Labeling 알고리즘을 수행하였다. 영상 처리 결과, 검증 이미지를 대상으로 군집형태 A로 판단된 결과는 면적만 고려한 것과 거리와 면적을 같 이 고려하였을 때 인식률 95%를 나타내었다. 군집형태 B의 경우 면적만을 고려하였을 경우 65%, 면적 과 거리를 모두 고려하였을 경우 95%로 나타났다. 군집형태 C의 경우 면적만을 고려하였을 경우 25%, 면적과 거리를 모두 고려하였을 경우 100%로 나타나 환경정보 보정자료로 활용이 가능한 것으로 판단 되었다.
        4,000원
        8.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        영상실감증대를 위한 시각, 청각, 촉각정보의 제시방식에 대해서는 많은 진보가 이루어 졌다. 반면 후각은 정의하기 어렵고 다루기 까다롭기 때문에 관련연구를 찾아보기 어렵다. 본 연구에서는 후각정보를 통한 영상실감증대 연구의 첫걸음으로 후각정보에 대한 사용자 수용도를 조사한 후 이에 근거하여 다양한 영상을 분류하였다. 이를 위해 먼저 영상에 냄새가 존재하는지 (냄새존재여부), 그 냄새가 실감을 증대시키는지 (실감증대효과), 영상과 함께 해당 냄새를 경험하고 싶은지 (냄새제시선호)라는 세가지 질문을 선정하였다. 각 질문들에 높은 혹은 낮은 점수를 받을 만한 다양한 장르의 영상 (51)개를 수집한 후, 참가자들에게 하나씩 영상을 시청하게 한 후 위의 세가지 질문에 대해 7점 척도로 평정하게 하였다. 영상분류를 위해 두 질문씩 쌍으로 묶어 각 질문의 척도를 2차원 평면의 X, Y축으로 설정한 후 평정값을 이용하여 영상분류를 위한 산포도를 구성하였다. 2차원 평면의 서로 다른 사분면에 위치한 영상군집들은 영상실감증대를 위한 후각정보 제시에 중요한 시사점을 줄 것으로 기대한다.
        4,600원
        9.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        위성 영상을 이용하여 지역을 분류하는 것은 토지피복(이용)을 파악할 수 있는 효율적인 방법 중 하나이다. 하지만 위성 영상 분류 방법 중 가장 널리 사용되는 감독분류방법은 훈련지역의 선정 및 분류자(classifier)에 따라 그 결과가 상이하고 통계적인 전제조건 또한 고려하여야 한다. 한편, 식생의 활력도 등을 파악하기 위해 사용되는 식생 지수는 20여 종에 이르는 다양한 식이 존재하며 이 중에는 도시화지역, 식생지역, 수계지역을 추출하기 적합한 NDBI(Normalized Difference Built-up Index), NDVI(Normalized Difference Vegetation Index), MNDWI(Modified Normalized Difference Water Index) 등이 존재한다. 따라서 본 연구에서는 이런 식생지수를 이용하여 Landsat TM 위성영상을 도시화지역, 식생지역, 수계지역이 잘 나타나는 3개의 지수 영상으로 재구성하고 이에 대한 무감독 분류를 실시하여 위성영상을 3가지 지역으로 구분하였다. 연구결과 식생지수 결합방법은 감독분류 방법에 비해 훈련지역의 선정과정이 없으므로 훨씬 수월하게 지역을 부분할 수 있었다. 또한 기준 데이터를 사용한 정확도 평가에 있어서도 두 방법 간 정확도 차가 ±2% 내에 지나지 않았다. 본 연구에서 제시한 방법은 분류에 비해 훈련지역의 표본 분포나 분류항목 간 분리도 등에 대한 통계적인 지식을 필요로 하지 않을 뿐만 아니라 방법적으로도 간편하여 효과적으로 도시지역 추출에 사용될 수 있으리라 생각된다.
        4,000원
        11.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        조감도는 건축분야에서 준공을 위한 필수 서류 중의 하나이다. 이와는 전혀 별개로 생각되어왔던 수치지형도와 수치정사영상을 이용한 3차원 조감도가 디지털 시대에 중요한 공간인식의 도구로 자리를 잡아오고 있다. 본고는 조감도의 분류체계를 잡아보고 지도학적 애니메이션을 포함한 국내외의 영상정보 조감도 활용사례를 살펴보았다. 실제로 건설사와 지자체를 상대로한 조감도 및 위성영상활용사례에 대한 설문조사와 함께, 일반지도 성과심사의 대상 내용을 분석하여 조감도로서의 위성영상지도의 검수대사여부에 대한 문제점을 살펴보았다.
        4,300원
        13.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 강원도 강릉지역 산불지역의 피해분석을 위한 피해지 지표분류를 목적으로 Landsat Enhanced Thematic Mapper Plus (ETM+) 영상에서 활용할 수 있는 분류지수의 적용을 검토하였다. 연구지역 산불지역을 대상으로 Landsat TM 영상을 활용하기 위해 개발된 식생지수(NDVI)와 토양을 고려한 식생지수(SAVI), Tasseled Cap 변환으로 억을 수 있는 밝기지수(brightness), 습윤지수(wetness), 녹색지수(greenness)를 야외조사 결과와 비교하였다. 분석 결과 식생지수와 토양을 고려한 식생지수는 산불발생지역과 산불이 발생하지 않은 지역에 대한 구분이 뚜렷하였으나, 산불발생지역내에서 피해지역 구분에는 적절하지 않은 것으로 파악되었다. 산불방생지역내에서는 Tasseled Cap 변화에서 나타나는 토양평면을 활용할 때 침식피해와 관련한 야외조사 결과와 가장 근접한 분류 결과를 얻을 수 있었다. Tasseled Cap 변환에서 건조지수와 녹색지수를 더하여 선형함수로 활용하면 신속하고 효율적으로 산불지역을 분류가 가능 할 것으로 기대된다.
        4,000원
        14.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 1991년 위성 데이터와 2002년의 위성 데이터의 비교 분석을 통한 전남 완도의 난대림 식생 변화추이를 밝히는데 있다. 이를 위해 1991년 Landsat TM영상과 2002년 Landsat ETM 영상이 이용되었으며, 이미지 프로세싱은 ENVI를 이용하였다. GIS를 이용한 난대림 관리 시스템 개발은 Arc/Info와 ArcView를 이용하여 완성되었다. 영상 데이터의 촬영시기 차이와 TM 영상의 해상도(Resolution)가 정밀하지 못해 복잡한 지형특성을 지닌 곳에서는 정확한 변화추이를 파악하기는 불가능하였으나, 2002년 영상을 이용하여 분석된 완도의 상록활엽수림 면적은 약 2,027ha로 산출되었다. 상록활엽수림과 상록침엽수림은 11년 전에 비해 소폭으로 증가하였으나 낙엽활엽수림은 큰 폭으로 감소하였다. 식생분류를 위한 기준은 상록활엽수림, 상록침엽수림, 낙엽활엽수림, 기타로 구분하였으며 감독분류기법을 통해 식생이 분류되었다. 완도의 공간 데이터는 녹지자연도, 현존식생도, 산림토양도, 훼손유형도, 지형도, 토지소유현황도로 분류되었고, 이에 대한 속성 데이터 베이스는 Arc/Info와 ArcView를 이용하여 완성되었다. 데이터를 관리하고 필요한 정보를 색인 분석하는 사용자 GUI(Graphic User Interface)는 Avenue를 이용하여 개발되었다.
        4,000원
        16.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        The increased frequency and intensity of wildfires can cause damages to the ecosystem and the atmospheric environment. Rapid identification of the wildfire damages is also important for establishing forest restoration, budget planning, and human resources allocation. Because the wildfires need to be examined for vast areas, satellite remote sensing has been adopted as an effective method. Many studies for the detection of wildfires and the analysis of burn severity have been conducted using mid- and high-resolution images. However, they had difficulties in the sensitivity problem of NBR (Normalized Burn Ratio) for multi-temporal images. This paper describes the feasibility of the detection and classification of wildfire burn severity using Sentinel-2 images with K-means and ISODATA (Iterative Self-Organizing Data Analysis Techniques Algorithm) methods for a case of the Andong fire in April 2020. The result can be a reference to the appropriate classification of large-scale wildfire severity and decision-making for forest restoration planning.
        17.
        2020.06 KCI 등재 서비스 종료(열람 제한)
        This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.
        18.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성 영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.
        19.
        2003.12 KCI 등재 서비스 종료(열람 제한)
        본 논문의 목적은 위성영상 피복분류항목에 대해 통계적 접근법으로부터 산정된 유출곡선지수(CN)를 이용하여 계산 유효우량과 관측 유효우량을 비교함으로써 그 적용성을 검토하는데 있다. 검정을 위한 적용대상지역은 경안천 수위지점 상류유역, 백옥포 수위지점 상류유역, 괴산댐 수위지점 상류유역으로 선정하였으며 각 지역별로 4개의 홍수사상을 선정하였다. CN 값 산정을 위해 2000년에 획득된 Landsat-7 ETM 영상을 이용하여 토지이용도를 구축하였으며 개략
        20.
        2003.12 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 미국 토양보존국(SCS)의 피복분류에 따른 유출곡선지수(CN) 값을 이용하여 위성영상 피복분류 항목에 대한 CN 값을 제시하는데 있다. 이를 위하여 SCS의 각 피복항목별 정의와 유역의 CN값 산정 방법에 대해서 연구하였다. 위성영상 피복분류 항목에 대한 CN값 산정방법으로 통계적 접근법을 사용하였으며 공간해상도에 따라 대분류, 중분류, 세분류로 구분된 환경부의 위성영상 피복분류항목에 대한 CN 값을 산정하였다. 본 연구의 결과는 향후
        1 2