Wastewater containing heavy metals such as copper (Cu) and nickel (Ni) is harmful to humans and the environment due to its high toxicity. Crystallization in a fluidized bed reactor (FBR) has recently received significant attention for heavy metal removal and recovery. It is necessary to find optimum reaction conditions to enhance crystallization efficacy. In this study, the effects of crystallization reagent and pH were investigated to maximize crystallization efficacy of Cu-S and Ni-S in a FBR. CaS and Na2S·9H2O were used as crystallization reagent, and pH were varied in the range of 1 to 7. Additionally, each optimum crystallization condition for Cu and Ni were sequentially employed in two FBRs for their selective removal from the mixture of Cu and Ni. As major results, the crystallization of Cu was most effective in the range of pH 1-2 for both CaS and Na2S·9H2O reagents. At pH 1, Cu was completely removed within five minutes. Ni showed a superior reactivity with S in Na2S·9H2O compared to that in CaS at pH 7. When applying each optimum crystallization condition sequentially, only Cu was firstly crystallized at pH 1 with CaS, and then, in the second FBR, the residual Ni was completely removed at pH 7 with Na2S·9H2O. Each crystal recovered from two different FBRs was mainly composed of CuxSy and NiS, respectively. Our results revealed that Cu and Ni can be selectively recovered as reusable resources from the mixture by controlling pH and choosing crystallization reagent accordingly.
Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, CH4 conversion was 91%, and Hz and CO selectivities were both 98% at 850℃ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.
To produce palm kernel shell (PKS) biocrude oil, a bubbling fluidized bed pyrolyzer was used with different sample sizes and reaction temperatures. The PKS sample sizes used were 0.1 ~ 0.4 mm, 0.4 ~ 1.0 mm, and 1.0 ~ 2.0 mm and the reaction temperature were 465oC, 490oC, 530oC, 560oC, and 590oC. The yield of PKS biocrude oil increased with decreasing the sample size. The maximum yield of PKS biocrude oil was 47.31% at 560oC with a PKS sample size of 0.1 ~ 0.4 mm. In addition, the maximum energy yield of PKS biocrude oil was 45.05% at 560oC and size 0.1 ~ 0.4 mm. Among the characteristics of PKS biocrude oil, the high heating values are from 15.98 MJ/Kg to 20.29 MJ/Kg, the moisture content is from 20.14wt.% to 31.57wt.%, and the viscosity ranges from 0.0117 N s/m2 to 0.0408 N s/m2. In addition, proximate analyses and elemental analysis of PKS biocrude oil were conducted.
The optimum design and scale-up of a fast pyrolysis reactor require a fundamental understanding of its hydrodynamics characteristics. Extensive investigations have been carried out, both theoretically and experimentally, to understand the hydrodynamic characteristics of gas-solid two-phase flow in a pyrolysis reactor, such as velocity field, solids concentration, and pressure drop. Numerical simulation can provide a promising alternative for studying the hydrodynamics of gas-solid flows in the fast pyrolysis reactor. In this study, computational particle fluid dynamics (CPFD) was used to investigate the hydrodynamic characteristics of bubbling fluidized bed (BFB) and conical spouted bed (CSB) reactors. These characteristics were analyzed in terms of pressure drop, solid distribution, and solid circulation rate. The BFB reactor was found to have a lower efficiency than the CSB reactor. The pressure drop of the CSB reactor was 25% less than that of the BFB reactor. The solid circulation rate of the CSB reactor was 68% greater than that of the BFB reactor.
화석연료의 고갈문제와 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 중국, 인도 등의 국가에서 경제 성장을 위한 화석연료 의존도가 계속 높아지고 있다. 그러나 화석연료는 가격의 변동이 심하고, 한정된 매장량을 지니기 때문에 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 바이오매스 및 폐자원을 활용하여 에너지를 생산하는 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 바이오에너지는 바이오매스, 폐자원으로부터 전환된 에너지 사용 시 발생되는 이산화탄소가 순환을 통하여 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적인 친환경 에너지이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 분해공정을 통하여 더욱 가치있는 에너지의 형태로 활용 가능하며, 그 중 급속열분해 공정은 무산소 조건, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 반응조건으로 하여 생산된 타르를 응축과정을 통해 액상 생성물인 바이오원유로 회수하는 공정이며 바이오원유의 회수율을 가장 높일 수 있는 공정이다. 바이오오일의 수율 및 성상은 급속열분해 운전조건에 따라 영향을 받으며 그 중 반응온도가 가장 중요한 인자이다. 따라서 본 연구에서는 낙엽송 톱밥을 원료로 하여 400 - 550℃로 반응온도를 변화시켜가며 바이오원유를 생산하고 생산된 바이오원유의 수율 및 다양한 물리화학적 분석(고위발열량, 수분함량, 점도, pH 등)을 통하여 그 특성을 파악하는 연구를 진행하였다.
The photocatalytic decolorization of Rhodamine B (RhB) was studied using immobilized TiO2 and fluidized bed reactor. Immobilized TiO2(length: 1~2 mm, width: 1~3 mm, thickness: 0.5~2 mm) onto silicone sealant was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, superficial velocity, H2O2 and anion additives. (NO3-, SO42-, Cl-, CO32-) The results showed that the optimum dosage of the immobilized TiO2 were 87.0 g/L. Initial removal rate of RhB of the immobilized TiO2 was 1.5 times higher than that of the powder TiO2 because of the adsorption onto the surface of immobilized TiO2. In the conditions of acidic pH, initial reaction rate was increased slowly and reaction time was shorted. The effect of anion type on the reaction rate was not much.
The photocatalytic oxidation of Rhodamine B (RhB) was studied using immobilized TiO2 and fluidized bed reactor. Immobilized TiO2 onto GF/C was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, air flow rate and anion additives (NO3-, SO42-, Cl-, CO32-) competing for reaction. The results showed that the optimum dosage of the immobilized TiO2 was 40.0 g/L. Initial removal rate of immobilized TiO2 was expressed Langmuir - Hinshelwood equation.
The objectives of this study were to investigate the desulfurization kinetics of paper sludge and limestone in a fluidized bed reactor according to bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the desulfurization efficiency of limestone and paper sludge. In paper sludge, the optimum condition in desulfurization temperature was at 800℃ and in limestone, that was at 850℃ or 900℃. Second, as air velocity increased, the desulfurization efficiency(or the absorbed amount of sulfur dioxide) by limestone and paper sludge decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by limestone. Third, as the velocity increased and the optimum desulfurization temperature became, ks and the removal efficiency increased. So, ks, kd highly depended on the air velocity and bed temperature.