Gate valves are hydraulic components used to shut-off the water flow in water distribution systems. Gate valves may fail owing to various aspects such as leakage through seats, wearing of packing, and corrosion. Because it is considerably challenging to detect valve malfunctioning until the operator identifies a significant fault, failure of the gate valve may lead to a severe accident event associated with water distribution systems. In this study, we proposed a methodology to diagnose the faults of gate valves. To measure the pressure difference across a gate valve, two pressure transducers were installed before and after the gate valve in a pilot-scaled water distribution system. The obtained time-series pressure difference data were analyzed using a machine learning algorithm to diagnose faults. The validation of whether the flow rate of the pipeline can be predicted based on the pressure difference between the upstream and downstream sides of the valve was also performed.
본 연구에서는 투과 유량 모델을 개발하기 위하여, 시간, 막 전후의 압력 차, 회전 속도, 막의 기공 크기, 동점도, 농도 및 공급 유체의 밀도 등 7개의 입력 변수에 기반한 두 종류(ANN 및 SVM) 인공지능 기법을 이용하였다. 시행착오법과 실험데이터와 예측 데이터 간의 결정 계수(R2) 와 평균절대상대편차(AARD)를 포함한 두 가지 통계 변수를 통해 최적의 모델 을 선정하였다. 최종적으로 얻어진 결과에서 최적화된 ANN 모델이 R2 = 0.999 및 AARD% = 2.245인 투과 플럭스 예측 정 확도를 보여서, R2 = 0.996 및 AARD% = 4.09의 정확도를 보인 SVM 모델에 비해 더 정확함을 알 수 있었다. 또한, ANN 모델은 SVM 방식에 비해 투과 유속을 예측하는 능력도 더 높은 것으로 나타났다.
In this theoretical study, a design and performance analysis theory of a micro flowrate and high pressure air-compressor is developed. The governing equations are from the gas state equation and fluid dynamic theories because the working fluid in the air compressor is in a gas phase. A case study was conducted to design a reciprocating type of air compressor which the target performance was 0.6liter/min in the volume flowrate with 5atg in air pressure at 1,600rpm rotational speed. Geometrical size of the model air compressor designed is 10mm in stroke, 20mm in bore with 4.79 compression ratio. From the performance analysis of the model compressor, it was found that the air volume flowrate produced was 0.6liter/min with 5.81atg in pressure. The design theory of a micro-size high-pressure air compressor developed in this study is expected to be very useful design tools in NANO technology industry.
Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While R2 value of flow rate calibration was 0.85 and R2 value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.
본 연구에서는 충주댐 유역에 대해 앙상블 유량예측기법의 강우-유출 모델 매개변수, 입력자료에 따른 불확실성 분석을 수행하였다. 앙상블 유량예측기법으로는 ESP (Ensemble Streamflow Prediction) 기법과 BAYES-ESP (Bayesian-ESP) 기법을 활용하였으며, 강우-유출 모델로는 ABCD를 활용하였다. 모델 매개변수에 따른 불확실성 분석은 GLUE (Generalized Likelihood Uncertainty Estimation) 기법을 적용하였으며, 입력자료에 따른 불확실성 분석은 유량예측 앙상블에 활용되는 기상시나리오의 기간에 따라 수행하였다. 연구결과 앙상블 유량예측 기법은 입력자료 보다 모델 매개변수의 영향을 크게 받았으며, 20년 이상의 관측 기상자료가 확보되었을 때 활용하는 것이 적절하였다. 또한 BAYES-ESP는 ESP에 비해 불확실성을 감소시킬 수 있는 것으로 나타났다. 본 연구는 불확실성 분석을 통해 앙상블 유량예측기법의 특징을 규명하고 오차의 원인을 분석하였다는 점에서 가치가 있다고 판단된다.
본 연구는 AWS 관측강우정보를 이용하여 실시간 유량예측을 수행할 경우 적용가능한 예측선행시간 및 정확도를 평가하고자 하는데 그 목적이 있다. 이를 위해 남한강 상류유역을 대상유역으로 선정하였으며 2006∼2009 홍수기간에 대해 SURF 모형을 구축하였다. 관측유량 자료동화 수행 유무에 따른 모의유량은 관측유량을 잘 모의하며 유효성지수를 이용하여 자료동화 효과를 분석한 결과에서 충주댐 32.08%, 달천 51.53%, 횡성 39.70%, 여주 18.23%가 개선된 것으로 나타났다. 첨두유량 발생시간 이전 가상의 현재시점까지의 AWS 관측강우정보를 이용하여 유량예측 적용성을 평가한 결과 허용오차 20% 범위 내에서 첨두유량은 충주 11시간, 달천 2시간, 횡성 3시간, 여주 5시간, 유출용적은 충주 13시간, 달천 2시간, 횡성 4시간, 여주 9시간 이내에서 예측이 가능한 것으로 나타났다. 따라서 유역의 지체효과로 인해 관측강우만을 이용하여 적정 예측시간에 대해서 실시간 첨두유량 예측이 가능할 것으로 판단된다.
RDAPS 수치예보로부터 생산된 일단위 강우시계열을 바탕으로 유량 예측을 모의하고, 정성적인 중장기 예보를 고려한 ESP 분석을 수행하여 결과를 비교하고 적용성을 검토하였다. 금강유역을 대상으로 ESP, 정성적 기상예보를 고려한 ESP, RDAPS 기상수치예보에의한유량예측결과를평균유출량과비교 분석을 통해각기법별 결과의 개선효과를 평가하였다. 예측 모의 결과 기상정보를 고려한 ESP 방법의 결과가상대적으로 양호한 것으로 분석되었다. 확률예측의 정확도를 평
본 연구는 연속형 강우-유출모형과 관측유량 자료동화기법으로 앙상블 칼만필터 기법을 연계한 SURF 모형을 낙동강유역에 적용하여 하천유량예측의 적용성을 평가하고자 하는데 그 목적이 있다. 낙동강유역을 43개 소유역으로 구분하고 2006년과 2007년의 홍수기간 동안 12개 평가지점에 대해 유출모의를 수행하였다. 관측유량 자료동화 효과로 인해 예측유량의 정확도가 향상되며 1~5시간의 예측선행시간별 유효성지수를 분석한 결과 자료동화로 인해 46.2~30.1%
본 연구에서는 연속형 강우-유출모형과 앙상블 칼만 필터 기법을 연계하여 실시간 하천유량 예측모형을 개발하고 자료동화로 인한 정확도 개선 정도를 평가하고자 한다. 대상유역은 안동댐 상류유역을 선정하고 2006.7.1~8.18과 2007.8.1~9.30의 홍수기간에 대해 평가를 수행하였다. 자료동화를 위한 모형 상태변수는 유역의 토양수분과 저류량 및 하도 저류량을 선정하였으며 하류 댐 지점의 관측유량을 이용하여 상태변수를 갱신하도록 모형을 설계하였다. 상태
중장기 기후예보는 기후역학모형의 비약적인 발전과 ENSO등의 기후현상에 대한 규명으로, 전세계적으로 정확성이 크게 향상되고 있어 중장기 유량예측의 중요한 실마리가 되고 있다. 본 연구에서는 우선 중장기 유량예측 향상을 위하여 국내에서 사용 가능한 기후정보, 즉 월간산업기상정보와 GDAPS(Global Data Assimilation and Prediction System)를 조사하고 그 정확성을 평가하였다. 월간산업기상정보와 GDAPS의 순별 예보에서
한국수자원공사에서는 매월 1일 생성한 월 앙상블 유량예측(Ensemble Streamflow Prediction, ESP)을 근거로 월 최적운영 모형인 SSDP모형을 통해 월말목표저수량을 산정할 수 있는 실시간 물 관리 시스템을 구축하였다. 그러나 월 중간에 발생하는 수문기상학적 변화를 반영할 수 없다는 단점을 가지고 있어 이를 보완하자는 필요성이 제기되었다. 이를 위해 본 연구에서는 1일부터 예측시점까지는 그 동안 발생한 강우 관측자료를 이용하고 이후
평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MD
일단위 강우-유출모형인 SSARR모형을 이용하여 한강, 낙동강, 섬진강유역에 월 앙상블 유량예측 시스템을 구축하였다. 우선 SSARR모형의 월 평균 유출량에 대한 모의정확성을 평가한 결과 한강과 낙동강유역에서는 과소추정하는 경향이 뚜렷하였으며, 섬진강유역에서는 모의오차의 분산이 커 정확성 개선이 필요하였다. 최적선형 보정기법을 적용하여 SSARR모형의 모의유량을 보정한 결과, 섬진강을 제외한 한강과 낙동강유역의 검증지점에서는 모의 정확성이 크게 개선되었
본 연구에서는 단기 예측강우를 활용하여 실시간 유량을 예측할 수 있는 기상-수자원 연계기법을 개발하였다. 이를 위해 기상청의 RDAPS 강수자료와 저류함수(SFM) 모델을 통해 소양강댐 상류유역의 댐유입량을 계산하고 그 정확도를 분석하였다. 대상 사례기간인 2003년 7월 18일부터 2003년 7월 24일까지 RDAPS 강우예측자료의 정확도를 평가한 결과 RDAPS 및 관측 강수량 사이의 정성적 평가에서 매우 우수한 정확도를 보이고, 수자원 측면에서 필