Total dissolved solids (TDS) 제거에 이용되는 이온교환수지는 컬럼에 충진시켜 사용하게 되는데, 이온교환 과정 에서 이온성 물질과 이온교환수지의 충분한 접촉시간을 필요로 한다. 본 연구에서는 이온교환수지의 분체화를 통하여 짧은 접촉시간으로도 높은 TDS 제거 성능을 보이는 이온교환수지의 특성을 연구하였다. 흐름성 등을 고려한 분체의 최적 크기는 100 μm 이상임을 확인하였고, 250~500 μmd와 100~250 μm 크기의 최대 분쇄 수율은 각각 67.3%와 36.9%였다. 또한 100~500 μm 크기의 분쇄 수율은 분쇄 시간 2분에서 87.1%로 나타났다. 회분식(batch) 실험 조건에서 250~500 μm 크기의 분체가 95%와 99%의 제거율에 도달하는 시간은 분쇄 전(non-pulverized) 이온교환수지에 비해 각각 1.82배와 1.96배 더 빨랐 다. 100~250 μm 크기의 분체는 각각 15.9배와 6.18배 더 빨랐다. 컬럼 테스트의 경우 분쇄 전 이온교환수지는 총 1.74 g, 250~500 μm 크기의 분체는 1.83 g, 100~250 μm 크기의 분체는 1.63 g의 NaCl을 제거하였다. 분체의 크기가 작아질수록 용 량(capacity)이 약간 감소한 것으로 나타났다. 결과적으로 분체화된 이온교환수지를 사용하는 것이 접촉시간 대비 높은 TDS 제거 성능을 얻을 수 있는 방법임을 확인하였다.
알칼리 금속 이온과 염소 이온이 포함된 용액으로부터 이온교환수지를 이용한 이온 제거에 대한 연구를 진행하였다. 양이온인 금속이온(Na+와 K+)의 제거에는 양이온교환수지를, 음이온인 염소 이온(Cl-)의 제거에는 음이온교환수지를 사용하였다. 용액 A (Na+를 36,633 ppm, Cl-를 57,921 ppm 함유)의 경우, Na+ 이온과 Cl- 이온은 20분 이내에 99% 이상 제거되었다. 용액 B (K+를 1,638 ppm 함유)의 경우, K+ 이온은 3분 이내에 99% 이상 제거되었다.
CKD 추출액은 시멘트공정에서 발생한 폐기물인 CKD를 시멘트 원료로 재사용하기 위해 공정 방해물질로 작용하는 KCl을 추출한 폐수이며, 폐수처리시설 증설 등의 문제로 추출액 무방류 및 이를 재이용하고자 하였다. 이온교환법을 적용하여 KCl을 제거한 결과, 이온교환 후 추출액의 pH는 12.7 에서 pH 2 미만으로 감소하였으며 양이온교환수지의 H+가 이온교환을 거쳐 추출액에 용해되었음을 확인하였다. 이온교환의 선택성에 의해 Ca2+, K+ 순서로 제거되었으며, K+ 이온을 제거하기 위해 접촉시 간의 증가가 필요함을 판단하였다. 이온교환수지와 직접접촉시간이 약 6배 높은 접촉시간을 갖는 회분 식장치에서 연속흐름식장치 대비 4배 높은 K+ 제거 효율을, 7배 높은 Cl- 제거 효율을 확인하였다. 양이온교환수지의 H+가 음이온교환수지의 OH- 대비 1.2배 빠른 교환속도를 가짐을 추출액 pH 변화를 통해 확인하였다.
최근, 전세계적으로 물 부족 현상과 지역개발 및 산업 고도화, 인구증가와 함께 물 수요는 증가하고 있다. 이를 해결하기 위한 방법으로 해수담수화 방법이 있다. 해수 담수화의 많은 방법 중 이온 교환막을 이용한 실험을 진행하였다. 본 연구에서는 Anion exchange resin을 대체할 수 있는 물질로 Polystyrene Latex입자를 제조 하였다. 제조된 입자에 chloromethylation과 amination을 통해 –NH3+, -NR3+, -PR3+, -SR2+등의 관능기를 도입하였으며, 제조된 입자와 고분자를 합하여 하이브리드 막 제조를 하였다. 특성평가로는 SEM, TGA, DSC, FT-IR, IEC Value를 통한 측정을 진행하였다.
본 연구에서는 수계 내 포함된 양이온들 중 특히 중금속 이온을 효율적으로 분리할 수 있는 양이온 교환막을 개 발하였다. 기저 고분자로는 sulfonated polyetheretherketone (SPEEK)를 사용하였으며 이에 중금속 이온에 결합력이 강한 킬 레이팅 수지를 파우더링하여 첨가하였다. 또한 양이온 교환막의 성능을 최적화시키기 위해 킬레이팅 수지의 함량 및 SPEEK 의 이온교환용량을 제어하였다. 결과적으로 제조된 양이온 교환막을 막 축전식 탈염 공정(membrane capacitive deionization, MCDI)에 적용한 결과 중금속 이온 제거 효율이 20% 이상 향상됨을 확인할 수 있었다.
본 연구에서는 RO(Reverse osmosis) membrane과 이온교환수지를 이용하여 방사성 이온을 제거하였다. RO필터 2개회사, 3종(1종은 세정한 폐필터)으로 요오드와 세슘을 포함하는 공급수에 대해 2bar, 4bar의 압력, 10, 50, 100ppm의 공급수 농도로 실험을 하였다. 대체적으로 고압에서 높은 제거율을 얻을 수 있었으며, 고농도에서 높은 제거율을 얻을 수 있었다. 세정한 폐필터에 대한 결과 값으로 미루어 보았을 때, 세정효과가 큰 것을 확인할 수 있었다. 이온교환수지 도 3개회사의 제품을 사용하였으며, 같은 농도하에서 수지의 양을 달리하여 제거율을 비교하였다. 비교적으로 요오드보다 세슘에 대한 제거율이 높았으며, 혼합수지에 비해 단일수지의 제거율이 높은 것을 확인 할 수 있었다.
Crosslinked ion exchange resin composite membranes were prepared by casting sulfonated polystyrene(SPS) solution with suspended ion exchange resin(crosslinked SPS) and crosslinker (trimethylolpropane ethoxylate triacrylate (TMPETA)) follow by gamma-ray irradiation. The physicochemical properties of the composite membranes were evaluated by measuring gel-fraction, ion exchange capacity, water-uptake and dimensional stability. We confirmed that the introduction of ion exchange resin and radiation crosslinking in the membranes improved the water uptake, dimensional stability and permselectivity.
Very recently, an efficient electrochemical desalination process employing bipolar membranes with large ion-exchange area is being developed (so-called ‘electro-adsorptive deionization’). In this process, ions dissolved in a feed solution can be removed through an ion-exchange mechanism under a strong electric field (a forward bias condition). The membranes can also be regenerated without the use of additional chemicals by the water-splitting reactions which occur at the bipolar junction of membranes (a reverse bias condition). In this work, we have developed novel bipolar membranes containing iron oxide/hydroxide catalysts. In addition, the ion-exchange capacities of the bipolar membranes have been largely enlarged by embedding finely powdered ion-exchange resins. (No. 10047796) (No. 2015H1C1A1034436)
In order to prove that perchlorate-laden resins could be bio-regenerated through direct contact with anaerobic microorganisms, two bio-regeneration systems, internal and external, were tested. Anaerobic digestion was demonstrated to be very efficient in degrading perchlorate that had been adsorbed onto A520E resin. The internal bio-regeneration test showed that the fully exhausted resins recovered about 80% of the perchlorate-exchange capacity after 4 weeks of bio-treatment in the anaerobic digester. The bio-regeneration efficiency of the external system increased with the amount of flow passed through the column. Comparison of two perchlorate breakthrough curves obtained from column test, one with virgin resin and the other with bio-regenerated resin, proved that the bio-regenerated resin could be used repeatedly to treat perchlorate in spent or waste brine. The A520E resin was very stable in the anaerobic digester and its perchlorate-exchange capacity was barely changed during 26 weeks of incubation. The most significant contribution of this research is to develop the concept of direct bio-regeneration of exhausted resins by combining physicochemical ion-exchange and biological reduction technology, especially for the removal of perchlorate.