검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최적 운항자세 선정 기술이란 주어진 운항 배수량과 운항 선속에서 최소의 저항을 가지는 즉, 최적의 연료 소비 효율을 가지는 초기 선수흘수와 선미흘수를 제시하는 것이다. 본 논문의 주 목적은 대상선박의 유효동력 데이터를 기반으로 주어진 운항조건에서 최대 의 에너지효율을 가지는 최적의 운항자세를 선정하는 프로그램 개발하는 것이다. 본 프로그램은 인공지능 기법에 의한 파이썬 기반 GUI(Graphical User Interface)로 작성되어 선주가 쉽게 사용할 수 있도록 하였다. 그 과정에 있어 대상 선박 소개, 전산유체역학(CFD)을 통한 유효동력 데이터 수집, 심층학습을 사용한 유효동력 모델 학습 방법 그리고 심층신경망(DNN) 모델을 응용한 최적 운항자세 제시 프로그 램을 구체적으로 설명하였다. 선박은 운항 별로 화물을 싣고 내리게 되고, 이에 화물 적재량이 변화되고 배수량이 변경된다. 선주는 배수 량 별 예상 선속에 따라 최소저항을 가지는 즉, 최대의 에너지효율을 가지는 최적의 운항자세를 알고자 한다. 개발된 GUI는 해당선박의 태블릿 PC와 앱에 설치하여 최적 운항자세 선정에 활용 가능하다.
        4,000원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        급격한 산업화와 도시화로 인해 해양 오염이 심각해지고 있으며, 이러한 해양 오염을 실효적으로 관리하기 위해 수질평가 지수(Water Quality Index, WQI)를 마련하여 활용하고 있다. 하지만 수질평가지수는 다소 복잡한 계산과정으로 인한 정보의 손실, 기준값 변동, 실무자의 계산오류, 통계적 오류 등의 불확실성(uncertainty)을 내포하고 있다. 이에 따라 국내ㆍ외에서 인공지능 기법을 활용하여 수질평가지수를 예측하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 해양환경측정망 자료(2000 ~ 2020년)를 활용하여 우리나 라 전 해역 즉, 5개의 생태구에 대한 WQI를 추정할 수 있는 가장 적합한 인공지능기법을 도출하기 위해 총 6가지의 기법(RF, XGBoost, KNN, Ext, SVM, LR)을 실험하였다. 그 결과, Random Forest 기법이 다른 기법에 비해 가장 우수한 성능을 보였다. Random Forest 기법의 WQI 점수 예측값과 실제값의 잔차 분석 결과, 모든 생태구에서 시간적 및 공간적 예측 성능이 우수한 것으로 나타났다. 이를 통해 본 연구에서 개발한 Random Forest 기법은 높은 정확도를 바탕으로 우리나라 전해역에 대한 WQI를 예측 가능할 것으로 사료된다.
        4,300원
        3.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경추 MRI는 연부 조직에 대한 대조도와 분해능이 우수하여 경추 부위의 퇴행성 질환 및 추간공의 협착, 척수염, 추간판 탈출증 등의 신경 질환 검사에 특히 이용되고 있다. 그러나 경추 MRI 검사는 신경 질환에 의한 배경 신호 강도가 증가되어 SNR이 감소하고 이를 보상하기 위해 여기 횟수가 증가되어 검사 시간이 길어지는 단점이 있다. 교통사고나 낙상을 원인으 로 경추 MRI 검사를 진행할 시 검사 시간이 길어 호흡과 질환의 통증에 의한 움직임 등을 최소화해야 최적의 영상을 획득 할 수 있어 환자의 적극적인 협조가 요구되며 적정한 검사 시간의 단축을 통해 인공물이 없는 진단 가능한 영상을 만들어 낼 수 있다. 최근 개발된 SwiftMR 인공지능 소프트웨어는 경추 MRI 검사 시간을 획기적으로 줄일 수 있다. T2 시상면, T2 축상면, T1 시상면, T1 축상면 SwiftMR 영상의 SNR은 목뼈 몸통 223.82 ± 30.82, 척수 273.03 ± 32.38, 가시돌 기 및 가로돌기 378.61 ± 27.64로 측정되었다. 고속스핀 에코 기법의 SNR은 목뼈 몸통 116.51 ± 11.46, 척수 182.1 ± 22.24, 가시돌기 및 가로돌기 227.79 ± 35.55로 측정되었다. 고속스핀에코 기법의 CNR은 182.12 ± 13.24, SwiftMR 기법 CNR은 346.8 ± 41.84로 측정되었다. 고속스핀에코와 SwiftMR 인공지능 소프트웨어가 적용된 영상을 통해 화질 선명도, 신호 강도의 균일성, 목뼈 몸통 주변의 인공물의 관찰자 간 병변에 대한 일치성 평가는 K값이 0.87로 평가되었다. 연구 결과를 통해 경추 MRI 검사에 SwiftMR 인공지능 기법을 적용함으로써 검사 시간을 단축할 수 있으며, 환자의 불편을 최소화하고 진단 가능한 질 좋은 영상 정보를 제공할 수 있을 것으로 사료된다.
        4,000원
        6.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스타크래프트는 1998년도에 미국 ‘블리자드’ 사에서 제작한 실시간 전략 시뮬레이션 게임이다. 이 게임의 등장 이후로, 게임을 즐기는 사용자들의 수준은 본 게임이 등장한 이후로 월등히 향상되었으나, 본 게임의 컴퓨터 인공지능의 수준에는 변화가 없었다. 이 문제를 해결하기 위해, 몇 가지 연구 노력이 진행되어왔다. 그러나 기존의 인공지능 성능 향상 기법들은 치트 (cheat) 등을 사용하거나, 상당히 획일화된 전략 전술로 인해, 컴퓨터 인공지능의 한계가 쉽게 드러나는 단점이 있었다. 본 논문에서는 보다 적응성 있고 비용 효율적인 빌드 오더 선택 기법을 제안한다. 제안한 기법은 상대적인 전략 전술의 차이를 바탕으로, 현 상황에서 발생할 수 있는 적의 공격에 대하여 비용 효율적인 대응 방안을 선택한다. 이를 사용하면 컴퓨터 인공지능의 질과 성능의 측면에서 향상을 이룰 수 있다. 제안한 기법과 기존 스타크래프트 인공지능의 상대적 성능 평가를 통해, 제안한 기법을 사용한 인공지능이 월등히 뛰어난 성능을 보임을 확인한다.
        4,300원
        7.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        최근 게임분야에서 수준 높은 인공지능 에이전트의 구현은 많은 주목을 받고 있다. 그 중 Monte-Carlo Tree Search(MCTS)는 완전 정보를 가진 게임에서 무작위 탐색을 통해 최적의 해를 구할 수 있는 알고리즘으로, 수식으로 표현되지 않는 경우에 근사치를 계산하는 용도로 적합하다. 하스스톤과 같은 Trading Card Game(TCG) 장르의 게임은 상대방의 카드와 플레이 를 예측할 수 없기 때문에 불완전 정보를 가지고 있다. 본 논문에서는 불완전 정보 카드 게임 에서 인공지능 에이전트를 생성하기 위해 MCTS 알고리즘을 응용하는 방법을 제안하고, 현재 서비스되는 하스스톤 게임에 적용하여 봄으로써 MCTS 알고리즘의 실용성을 검증한다.
        8.
        2006.02 KCI 등재 서비스 종료(열람 제한)
        This study is aimed at the development of a runoff forecasting model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The study area is the downstream of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model. The model performance was improved as the measuring time interval(Tm) was smaller than the sampling time interval(Ts). The Neuro-Fuzzy(NF) and TANK models can give more accurate runoff forecasts up to 4 hours ahead than the Feed Forward Multilayer Neural Network(FFNN) model in standard above the Determination coefficient(R2) 0.7.
        9.
        2004.07 KCI 등재 서비스 종료(열람 제한)
        The Neural Network Models which mathematically interpret human thought processes were applied to resolve the uncertainty of model parameters and to increase the model's output for the streamflow forecast model. In order to test and verify the flood discharge forecast model eight flood events observed at Kumho station located on the midstream of Kumho river were chosen. Six events of them were used as test data and two events for verification. In order to make an analysis the Levengerg-Marquart method was used to estimate the best parameter for the Neural Network model. The structure of the model was composed of five types of models by varying the number of hidden layers and the number of nodes of hidden layers. Moreover, a logarithmic-sigmoid varying function was used in first and second hidden layers, and a linear function was used for the output. As a result of applying Neural Networks models for the five models, the N10-6model was considered suitable when there is one hidden layer, and the N10-9-5model when there are two hidden layers. In addition, when all the Neural Network models were reviewed, the N10-9-5model, which has two hidden layers, gave the most preferable results in an actual hydro-event.