검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        1.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because magnets fabricated using Nd-Fe-B exhibit excellent magnetic properties, this novel material is used in various high-tech industries. However, because of the brittleness and low formability of Nd-Fe-B magnets, the design freedom of shapes for improving the performance is limited based on conventional tooling and postprocessing. Laserpowder bed fusion (L-PBF), the most famous additive manufacturing (AM) technique, has recently emerged as a novel process for producing geometrically complex shapes of Nd-Fe-B parts owing to its high precision and good spatial resolution. However, because of the repeated thermal shock applied to the materials during L-PBF, it is difficult to fabricate a dense Nd-Fe-B magnet. In this study, a high-density (>96%) Nd-Fe-B magnet is successfully fabricated by minimizing the thermal residual stress caused by substrate heating during L-PBF.
        4,000원
        2.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the effect of phosphorous content on the microstructure and magnetic properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1–4 at.%) nanocrystalline soft magnetic alloys. The simultaneous addition of Cu and P to nanocrystalline alloys reportedly decreases the nanocrystalline size significantly, to 10–20 nm. In the P-containing nanocrystalline alloy, P atoms are distributed in an amorphous residual matrix, which suppresses grain growth, increases permeability, and decreases coercivity. In this study, nanocrystalline ribbons with a composition of Fe83.2Si5.33-0.33xB10.67- 0.67xPxCu0.8 (x = 1–4 at.%) are fabricated by rapid quenching melt-spinning and thermal annealing. It is demonstrated that the addition of a small amount of P to the alloy improves the glass-forming ability and increases the resistance to undesirable Fex(B,P) crystallization. Among the alloys investigated in this work, an Fe83.2Si5B10P1Cu0.8 nanocrystalline ribbon annealed at 460oC exhibits excellent soft-magnetic properties including low coercivity, low core loss, and high saturation magnetization. The uniform nanocrystallization of the Fe83.2Si5B10P1Cu0.8 alloy is confirmed by high-resolution transmission electron microscopy analysis.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 μm) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°–80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.
        4,000원
        4.
        2019.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The magnetic properties and electronic structures of the B20 crystal structure MnGe and MnSi were investigated using the density functional theory with local density approximation. The low symmetry of the B20 crystal structure plays a very important role to make electromagnetic characteristics of these materials. The important result of the calculations is that it can be observed the appearance of a pair of gaps in the density of states near the Fermi level in both compounds. These features are results from d-band splitting by the low symmetry of the crystal field from B20 crystal structure. It can be seen that there is half-metallic characteristics from the density of states in both compounds. The calculation shows that the value of magnetic moment of MnGe is 5 times bigger than that of MnSi even though they have same crystal structure. The electronic structures of paramagnetic case have a very narrow indirect gap just above the Fermi level in both compounds. These gaps acquire some significance in establishing the stability of the ferromagnetic states within the local density approximation. Calculation shows that the Mn 3d character dominates the density of states near the Fermi level in both materials.
        4,000원
        5.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the Nd2Fe14B grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.
        4,000원
        6.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The HDDR(hydrogenation-disproportionation-desorption-recombination) process can be used as an effective way of converting no coercivity Nd-Fe-B material, with a coarse grain structure to a highly coercive one with a fine grain. Careful control of the HDDR process can lead to an anisotropic without any post aligning process. In this study, the effect of hydrogen gas input at various temperature in range of of hydrogenation stage (named Modified-solid HDDR, MS-HDDR) on the magnetic properties has been investigated. The powder from the modified-solid HDDR process exhibits Br of 11.7 kG and iHc of 10.7 kOe, which are superior to those of the powder prepared using the normal HDDR process.
        4,000원
        7.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of Cu content on microstructural and magnetic properties of a (wt.%), (x = 0.2, 0.3, 0.4, 0.5) strip-cast was studied. The average inter-lamellar spacing in the free surface and wheel side of the strip cast increased as the Cu content increases. The grain uniformity, the grain alignment, and (00L) texture of the strip cast increased with Cu contents up to 0.4 wt.%. These microstructural changes were attributed to the decrease of the effective cooling rate of the melted alloy caused by the decrease of the melting temperature of resulting from Cu addition. Coercivity and remanence were increased because of the grain alignment and (00L) texture improvement with Cu contents up to 0.4 wt.%.
        4,000원
        8.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hexagonal barium ferrite () nano-particles have been successfully fabricated by spraypylorysis process. precursor solutions were synthesized by self-assembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. powders were synthesized with addition of Fe ions to Ba-DEA complex and then fabricated powders by spray-pyrolysis process at the temperature range of . The molar ratio of Ba/DEA and heat-treatment temperatures significantly affected the magnetic properties and morphology of powders. powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at showed the coercive forces (iHc) of 4.2 kOe with average crystal size of about 100 nm.
        4,000원
        9.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.
        4,000원
        11.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An electromagnetic properties in BiSrCaCuO superconductor were studied. In the measurement of current-voltage properties, the voltage was measured when applying an external magnetic field. The voltage continues to appear after the removal of the magnetic field. This phenomenon was considered as a nonvolatile magnetic effect. The voltage increased with the applied magnetic flux, but it became constant at about T. The appearance of the voltage was ascribed to the trapping of magnetic flux.
        4,000원
        12.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the crystallization and magnetic properties of non-equilibrium alloy powders produced by rod-milling as well as by new chemical leaching. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h or 500 h milling, only the broad peaks of nano bcc crystalline phases were detected in the XRD patterns. The crystallite size, the peak and the crystallization temperatures increased with increasing Fe. After being annealed at for 1 h for as-milled alloy powders, the peaks of bcc are observed. After being annealed at for 1 h for leached specimens, these non-equi-librium phases transformed into fcc Cu and phases for the x=0.25 specimen, and into bcc phases for both the x=0.50 and the x=0.75 specimens. The saturation magnetization decreased with increasing milling time for alloy powders. On cooling the leached specimens from ,\;the magnetization first sharply increase at about for x=0.25, x=0.50, and x=0.75 specimens, repectively.
        4,000원
        16.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and gases. It was found that the phase transition from both - and -Fe to , which was evaluated from the results of Mossbauer spectra, strongly depended on the flow rate. As a result, - was synthesized under the flow rate of 0.1(Vmin)0.15, whereas was synthesized under the , flow rate of 0.15(Vmin)0.2.
        4,000원
        1 2 3