The objectives of this study were: (1) to identify differences in consumer attitudes and intentions to recycle fashion products using three types of recycling (including resale, reform, and donation), and (2) to examine the moderating effects of consumer prosocialness on the relationships between attitude and intention for each type of fashion product recycling. Men and women aged 20 years and over were recruited from a marketing research firm panel. Participants completed an online questionnaire incorporating measures for attitudes and intentions to resale, reform, and donate fashion products, prosocialness, frequency of purchasing fashion products, monthly amount of spending on fashion products, and demographic information. Data from 224 participants were analyzed using SPSS 25.0 and PROCESS macro. The results demonstrated that consumers had significantly different attitudes and intentions depending on type of fashion product recycling. Consumers had more positive attitudes toward donation compared to resale and reform types of recycling. Consumer intentions toward resale and donation were significantly higher than their intention to reform. Furthermore, this study confirmed that the attitude-intention gap in fashion product recycling can be explained by individual prosocialness. The moderating effects of prosocialness on the associations between attitude and intention to recycle were significant. The implications of increasing consumers’ behavior intention to recycle fashion products was discussed and future research suggestions are provided.
Most world-leading companies are aware that Environment and Health and Safety Issues are critical to the product quality and sustainable growth of their company. Environment-friendly efforts are seen in almost all aspects of business operations in an adva
급증하는 폐기물량을 극복하기 위해 국내에서는 1991년부터 재활용 정책을 적극적으로 도입하여, 현재 국가 통계로는 세계 1위의 재활용율을 보유하고 있다. 또한, 2016년에는 폐기물 목록을 재정비하였고, 그간의 재활용 용도 및 방법에 대한 제도를 전면적으로 혁신하여 네가티브 재활용 관리제도를 도입하였다. 하지만, 현행 제품 기준은 폐기물 재활용으로 인한 사람의 건강이나 환경에의 유해성을 적정하게 제어하기에는 미흡한 상황으로, 대부분의 제품기준은 폐기물 원료로 사용하는 것을 전제하지 않고 있어서 중금속, 유독물질 등의 유해물질 기준이 설정되어 있지 않다. 특히, 골재제품의 경우에는, 실질적으로 토양, 지하수 등의 자연매체와 직접적으로 접촉하여 환경오염의 우려가 매우 높음에도 불구하고 입도, 강도 등 물리적 기준 위주의 제품기준만이 설정되어 있는 상태이므로, 폐기물 자체 혹은 제조 과정의 특성에 따라 위해 우려가 높은 재활용제품과 원료에 대한 제품기준을 마련하고, 기준 초과 시 이의 제조․유통을 금지․제한함으로써 재활용 확대에 따른 환경안정성을 확보할 필요가 있다. 따라서 본 연구에서는 재활용 확대에 따른 환경안정성을 확보하기 위해 폐기물관리법 시행규칙 별표4의2에서 정한 재활용 유형 중 매체접촉형인 R-4-2, R-5, R-6, R-7을 대상으로 인체 및 환경 유해성 정도를 고려한 매체 접촉형 재활용 유형별 물질 및 재활용 제품군을 도출하고, 매체 접촉형 재활용 원료인 폐기물의 성상 및 유해성 정도에 따른 원료 기준 및 재활용 제품에 대한 유해성분 용출 및 함량 기준을 설정하였다.
최근 유럽은 2015년 순환경제사회로의 정책 기조 발표에 따라 자원효율성 지표 개발 등 관련 활동을 추진하고 있으며, 국내에서도 자원순환기본법이 2018년부터 시행될 예정이다. 또한 기존의 전자제품등자원순환법에서는 재활용 소재 사용에 따른 재활용 분담금 감면 정책이 시행되는 등 폐기물 최소화 및 순환자원 확보를 위한 정책 및 제도가 확대되고 있다. 이에, 국내외 자원순환 관련 정책 및 제도에 사전 대응하기 위해 국내 기업의 재활용 플라스틱 사용 현황을 파악하고, 재활용 소재 활성화 방안을 마련하고자 한다. 본 연구에서는 전기전자제품 완제품 제조업체를 대상으로 설계단계의 소재선정에 대한 일반현황, 재활용 소재 사용 현황, 재활용 플라스틱 사용 활성화 방안, 재활용 플라스틱 표준화 방안에 대한 설문조사를 진행하였다. 응답 기업의 주요 생산제품은 소형기기, 중형기기, 대형기기, 통신사무기기 순이며, 제품에 사용되는 플라스틱으로는 ABS, PVC, EP 등이 있다. 또한 응답 기업의 41%는 제품 설계단계에서 소재선정 및 검토의 주목적으로 성능 및 품질향상, 바이어 및 법적요구사항 만족으로 답변하였으며, 86%의 기업은 재활용 플라스틱 사용에 대해 현재 적용하고 있거나 확대 예정이라고 응답하였다. 응답 기업의 95%는 재활용 플라스틱 사용 시 재활용 분담금 감면 제도에 대해 인지하고 있으나 감면인정금액이 적어 활용하기 어렵다고 응답하였다. 이에, 재활용 플라스틱 활성화를 위해서는 금융・조세지원의 제도적 보완뿐만 아니라 재활용 소재 기술개발 지원, 국가표준 제・개정, 재활용 사용비율 의무화 도입 등의 방안이 필요한 것으로 나타났다. 특히, 응답 기업의 100%가 재활용 플라스틱 함유율 산정 방법 등 재활용 플라스틱 관련 표준 제정의 필요성을 인지한바, 표준 제정이 재활용 플라스틱의 보급‧확산에 큰 영향을 미칠 것으로 기대된다.
Raw and secondary waste materials from recycling products have been used to produce cements. A total of 10 cements produced from recycling products were analyzed for chemical composition, such as Na2O, MgO, Al2O3, SiO2, SO3, Cl, K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, CuO, ZnO, and PbO, using the Korean standard leaching test. The total content of toxic substances, such as Pb, Cd, Cu, As, Hg, and Cr(VI), present in each cement was also measured. The corrosion characteristics of cement leachates were also determined by measuring their pH values using an ion selective electrode and measuring the corrosion rate of a circular steel plate in each leachate. The chemical composition of the cements was found to be 60-67% CaO, 18-23% SiO2, and 5-6% Al2O3. Based on the results of the leaching tests, the samples did not exceed the prescribed regulatory leaching levels. The total content of toxic substances in each cement did not exceed the voluntary agreement criteria of 20 mg/kg. In the case of the corrosion characteristics of the cement leachates, the pH of each leachate was greater than 12.5 and the corrosion rate of a circular steel plate in each leachate did not exceed 6.35 mm/yr. The correlation between pH and the corrosion rate of steel in the solid waste leachates was difficult to determine.
전국적으로 의복을 제외한 섬유제품 제조업체 현황은 2012년 기준으로 7,155개에 이르며, 여기에서 발생되는 폐섬유 발생은 총 69,000톤/年으로 많은 폐기물이 발생하는 것으로 나타났다. 최근 재활용에 대한 인식이 높아지면서 폐섬유의 재활용 비율이 60% 정도로 나타나고 있으나, 생활용 섬유 자재에 경우는 재활용 비율이 극히 미약한 것으로 나타나고 있으며, 공정상에 발생하는 부산물 및 폐기물은 대부분 전량 폐기하거나 소각하는 것으로 조사되었다. 본 기술개발의 배경은 생활용 및 산업용 섬유 자재를 제조하는 공정에서 발생하는 공정 부산물 및 복합 섬유 폐기물을 재활용(Recycle)하는 기술로써, 구체적으로는 그물형태의 폴리에스테르 수세미, 마이크로 패브릭, 복합 스펀지형 수세미 등의 공정에서 발생하는 Loss 및 폐기물을 채취하여 보다 간소한 공정과 저렴한 비용으로 재활용(Recycle)하여 가정용 및 산업용에 다양하게 적용할 수 있는 Wiping 제품을 개발하여 상품화를 전개하는 기술이다. 폐기물 시트의 입자간 결합을 위한 Binding 및 Cross Linking 기술을 적용하여 재활용 와이핑 제품의 내구성 및 용도에 적합한 강도를 유지하기 위한 결속을 하고, 와이핑 용도 및 형태 안정화를 위한 후 가공을 통한 와이핑의 형태 안정화와 완성 폼을 형성하기 위한 Pressing이다. 상기의 기술개발을 통하여 생활용 섬유제품 제조현장에서 발생하는 폐기물을 저감시키고, 이 폐기물을 재활용(Recycle)을 위하여 고효율 및 생산성이 확보된 설비 제작 및 기술개발을 통해 새로운 부가가치 제품개발 및 원가경쟁력을 확보하고자 한다.
국내 폐유리 발생량은 2013년 기준으로 약 65만톤에 이르며 폐유리 이용량은 약 49만톤으로 나타나 재활용률은 75.6%로 나타났다. 하지만 폐유리병의 재활용을 제외한 기타 폐유리의 재활용율은 16%로 나타나 매우 저조한 실정이다. 국외 폐유리 재활용은 폐유리를 종류별로 구분하여 각 원료에 따른 재활용 기술을 확보하여 상용화하는 단계에 이르렀다. 그러나 국내 폐유리 재활용 기술은 대부분 유리병 재활용에 의존하고 있으며, 다양한 종류의 폐유리에 대한 재활용 기술 확보가 필요한 실정이다. 본 연구에서는 기존 폐유리 재활용 공정 중 소성 공정의 높은 에너지 소비로 인한 공정의 경제성 확보가 어려운 점을 보완하고자 하였으며, 폐유리 분말이 폐플라스틱이 녹는 온도에서 사출하여 고분자 수지에 폐유리 분말이 혼입되는 기술을 적용하였다. 또한 폐유리는 중량기준으로 최대 70%, 폐플라스틱은 30%까지 적용하여 가격 경쟁력을 확보하고자 하였다. 폐유리와 폐플라스틱을 활용한 시제품 생산에 대한 기초 연구로써 폐유리를 분쇄하여 미립화하는 실험과 폐유리 분말을 혼합한 플라스틱 사출 실험을 실시하였으며, 제조된 시제품에 대하여 열변형성, 인장강도, 신율 등의 물성을 분석하였다. 폐유리 분쇄는 V-볼링기를 이용하여 실시하였으며, 모니터 유리, 자동차 유리, 사이다병 유리, 맥주병 유리를 실험 재료로 이용하였다. 폐유리의 분쇄 정도를 파악하기 위하여 분쇄 시간에 따라 폐유리 분말 시료를 채취하였으며, 채취한 시료는 PSA 분석을 통하여 입도 분포를 검토하였다. 폐유리와 혼합한 폐플라스틱의 사출 실험은 다대식 방식의 사출기를 이용하여 진행하였으며 블록과 컵, 인장시편을 제조하기 위하여 사출 금형을 제작하였다. 사출기에 폐유리와 폐플라스틱의 혼합 재료를 주입하는 압력은 45bar이며, 사출온도는 180℃로 설정하였다. 사출을 통하여 제조된 시제품은 캐릭터 블록과 컵이며, 사출 원료를 각기 달리하여 총 6가지의 시제품을 제조하였다. 또한 인장시편은 인장강도와 신율의 분석을 위하여 제조하였으며, 사출 원료에 따라 총 4가지의 인장시편을 사출 제조하였다. 제조된 시제품은 저온 및 고온에서의 열변형성과 회분을 분석하였고 인장시편은 인장강도, 신율, 회분을 분석하였으며, 모든 분석은 공인인증기관에서 플라스틱 일반 시험방법 시험 KS M ISO 868에 의하여 진행되었다.
자원의 절약 및 환경보전을 위해서는 에너지와 천연자원의 문제를 해결하는 것이 국가 경제의 미래를 결정하는 주요변수로 작용될 수 있다. 특히, 천연자원의 무분별한 개발 증가로 가격 상승, CO2와 같은 온실가스 배출 증가, 에너지 소비 증가 등 자원 난개발은 경제자체 문제뿐만 아니라 환경오염 문제로 확대될 수 있어서 폐자원의 재활용은 순환형 사회 정착을 위해 더욱 부각되어야 한다. 따라서 재활용제품 사용에 따른 국민건강 위해우려수준을 낮추고 환경오염을 사전에 예방하는 폐자원의 안전성을 확보하기 위해 본 연구를 수행하였다. 조사대상 시료는 환경에 유해 가능성이 있을 것으로 예상되는 재활용제품 중 점토벽돌 15종, 고로슬래그 시멘트 11종, 성토재 11종을 선정하였으며, 비소, 카드뮴 등 중금속 8종에 대해 함량과 용출량을 분석하였다. 시멘트 공시체와 점토벽돌의 용출실험은 NSF/ANSI 61-2007a 시험방법, 성토재는 폐기물 공정시험방법으로 분석하였다. 물벼룩 독성시험은 재활용 제품을 증류수와 빗물로 용출한 액으로 실험하였다. 위해성 평가를 위해 용출실험한 결과, 재활용제품이 설치된 지역의 수질기준(수질 및 수생태계 하천기준, 지하수의 수질기준, 해양생태계 보호기준)과 비교하여 수질기준을 초과하는 경우 위해성평가를 실시하였다. 고로슬래그 시멘트공시체, 재활용 점토벽돌의 중금속 함량은 토양오염 우려기준 1지역 기준(비소 25, 카드뮴 4, 구리 150, 납 200, 수은 4 mg/kg 등)을 만족하였고, 슬래그 성토재 시료는 토양오염우려기준 2지역 기준(비소 50, 카드뮴 10, 구리 500, 납 400, 수은 10 mg/kg 등)이하로 나타났다. 증류수 용출실험에서 모든 시료의 중금속 용출량이 규제 항목에서 모두 검출한계 미만이었으며, 빗물 용출시험에서 고로슬래그 시멘트공시체와 재활용 점토벽돌, 슬래그 성토재 시료의 중금속 항목도 모두 검출한계 미만이었다.
Global increase in the demand for the new Electrical and Electronic Equipment (EEE) results in the rapid increase of waste electrical and electronic equipment (WEEE) (or electronic waste). Significant efforts on developing diverse WEEE recycling policy and programs such as extended producer responsibility (EPR), WEEE directive, and the restriction of the use of hazardous substances (RoHS) directive are being made by many developed nations. This study focuses on determining priority among proposed WEEE recycling policy research projects by a number of experts from academia, institutions and recycling industry using quality function deployment (QFD) method to better manage and recycle WEEE in Korea. In order to develop effective WEEE recycling policy, a total of 12 different WEEE recycling policy research projects were proposed by a total of 11 experts related WEEE recycling. Reliability and validity evaluation of the proposed projects were conducted, along with SPSS statistical software. By using the QFD method, a survey regarding potential problems, suggestions, and difficulties at several WEEE recycling facilities were conducted and evaluated. Evaluation of the proposed projects was made by house of quality (HOQ). In this study, proposed research projects with higher importance index include WEEE collection system, development of WEEE recycling guideline, and establishment of WEEE generation/collection/recycling national database. The QFD method employed in this study can be effectively used as a decision-making process tool in WEEE recycling policy and road map.
현행 폐기물관리법은 가용한 자원으로써의 폐기물의 재활용을 촉진하려는 배경에서 제정된 것이나 폐기물을 중간생성물 또는 원료로 제조한 재활용 제품에 함유된 유해화학물질에 대한 인체 건강과 생태계 영향, 환경오염에 대한 우려가 제기되어 왔다. 최근 정부에서는 이와 같은 문제에 선제적으로 대응하기 위해 폐기물관리법을 개정하여 환경위해 개연성이 높은 폐기물 재활용 제품 또는 물질에 대해 엄격한 심사를 거쳐 유해성 기준을 고시하고 안전한 재활용 용도와 방법을 장려하고 있다(폐기물관리법 제 13조의 3항). 따라서 이를 제도적으로 지원하기 위한 기술적 요소로 재활용 제품 중 유해물질에 대한 안전성기준의 확립이 필요하다. 폐기물의 성상은 매우 다양하고 여러 가지 용도로 재활용되어 왔고, 특히 폐기물 재활용 중 폐플라스틱이 높은 비중을 차지하고 있다. 폐플라스틱 제품은 비교적 수거가 쉽고, 간단한 용융공정 등을 거쳐 새로운 제품으로 제조하는 것이 가능하기 때문에, 다양한 용도로 재활용 되어왔다. 그러나 현재까지 적절한 위해성평가 절차를 통해 폐플라스틱을 이용하여 제조된 재활용제품 내에 함유된 유해물질에 대한 기준이 제시된 것은 거의 없다. 따라서 본 연구에서는 폐플라스틱을 원료로 하여 제조한 재활용제품에 대한 위해성평가 방법을 마련하고, 이들 제품의 용도에 따라 유해성기준을 제시하고자 수행하였다.
전기・전자산업은 디지털시대에서 인구증가에 의한 수요급증 및 과학기술의 발달에 의해 급속도로 발전하게 되었다. 이에 따라 전자제품의 발생량 및 폐기물 발생량도 증가하고 있으며 국내 중형생활가전 제품의 경우 1989년 472천대의 내수량에서 2007년 7,443천대로 약 6,971천대가 증가하였다. 폐전자제품은 폐기과정에서 중금속과 유독성 화학물질이 발생되며, 이는 국민 보건문제와 환경적 문제를 유발한다. 이로 인하여 국내에서는 폐전자제품 내 유해물질을 규제하고 재활용을 의무화 하는 제도를 시행하여 관리하고 있다. 또한, 최근에는 희귀금속 등의 천연자원에 대한 관심이 증가하면서 폐가전제품의 금속자원이 경제성을 확보함으로서 유가물 함유량이 높고 각종 금속・비금속 자원을 많이 포함한 폐전자제품 부품을 추출하여 재활용하고 있다. 하지만, 폐가전제품에 대한 수거체계가 각 지자체별로 수거되며, 반입되는 물량이 적어 폐금속자원 활성화사업에 어려움이 있는 상황이다. 뿐만 아니라, 민간수집상과 중고상 등과 같은 제도권 밖에서 회수・처리 되는 전자폐기물이 많아 발생량 파악이 어렵고, 폐전자제품의 발생 및 처리의 통계・실태 조사의 정보 부족과 구체적인 흐름 파악이 어렵다. 따라서 폐전자제품의 유통, 소비, 재활용, 처리 과정의 실태를 조사・분석하여 통계자료를 보완하고 폐전자제품의 재활용 시스템을 개선할 필요가 있다. 이에 본 연구에서는 중형폐가전제품 중에 사무기기로 분류되는 복사기와 팩시밀리를 대상으로, 연구 대상 폐제품의 사용 현황분석을 위해 기존 통계자료들을 조사・검토하였다. 이후 도시형 지역인 서울시 N 지자체와 도농복합도시인 경기도 Y 지자체를 표본지역으로 선정하여 연구대상 제품의 사용현황 분석 및 재활용 실태를 조사하였다. 표본조사에서는 제품 배출의식도 설문조사와 현장 방문조사를 실시하였다. 해당제품의 단순처리 또는 재활용 현황을 분석하기 위하여 고물상, 중간재활용 업체를 방문하여 설문 및 현장 조사를 실시하였다. 폐기물 발생 현황 분석에서와 같이 해당제품이 폐기물로 발생되는 시점에서부터 조사를 실시하였으며, 폐기 후 재활용 되는 경로에 대하여 분석하여 효율적 재활용 시스템 방안의 기초자료를 확보하였다. 본 연구에서는 중형폐가전제품의 이용, 폐기, 재활용 등 조사하여 최종적으로 물질흐름도를 작성하고, 물질흐름도 상에서 복사기와 팩시밀리의 적절하지 못한 경로로 유통, 재활용 처리 되는 문제점을 파악하여 각 단계에서의 재활용시스템 개선 방안을 마련하였다.
직물제조에서 발생되는 폐기물은 크게 준비공정에서 나오는 Waste, 잔사(殘絲)와 제직공정에서 발생하는 변사(邊絲) 폐기물이 대표적이다. 보통 이러한 폐기물은 소각하거나 일부 재활용하고 있으나 사용범위가 제한적이라 할 수 있다. 섬유산업의 메카인 대구에서 발생하는 제직폐기물은 연간 43,200ton으로 재활용율은 50%미만인 것으로 파악되며 특히 제직공정에서 발생하는 폐기물은 여러 섬유소재가 혼용되어 재활용율이 더 낮은 것으로 판단된다. 이러한 제직공정의 폐기물의 자원화 개발과 폐기물의 재상품화 개발이 절실한 상황으로 폐기물의 자원화 및 제품화할 수 있는 방안이 개발되어야 할 것이다. 이러한 방법 중 하나로 제직 폐기물의 단섬유화를 통해 산업용 부직포 제품을 개발하는 방법을 모색하고 있다. 본 개발은 Pilot 규모의 단섬유 설비를 이용하여 제직폐기물을 균일한 길이 절단하며 응집부위를 제거하여 재생단섬유(Recycle Staple Fiber)로 1차 가공하고, 개섬(Carding)공정을 통해 단섬유를 균일하게 분리하여 부직포 용도에 적합한 원료형태로 2차 가공을 진행한다. 제조된 재생 부직포원료를 압축(Pressure) 및 니들펀칭(Needle Punching), 캘린더링(Calendering) 공정을 통해 2~3회 반복 실시하고 열성형을 통해 차량용 내외장재로 적용할 수 있다. 현재까지 적용한 결과 제직시 발생하는 폐기물을 이용한 재생단섬유와 신재 단섬유 50:50 비율로 적용할 경우 자동차 내장재에 충분하게 접목할 수 있는 강도인 12~14 kgf를 나타냈으며, 원료의 선별관리를 통해서 충분하게 폐기물의 자원화 및 고부가가치 산업용 제품전개가 가능할 것으로 판단된다.
The development of recycling technology and process of waste electrical and electronic equipment (WEEE), also called electronic waste is becoming a growing interest in the world from the perspective of material recovery and resource conservation. In this study we examined the recycling technology levels of WEEE by both group category and recycling process using expert surveys. Based on the results of the expert surveys conducted, the level of large home appliances was found to be approximately 81.1% (± 6.2% std) when compared with that of the advanced countries, while small home appliances and IT equipment and audio/video equipment were 73.5% (± 6.2% std) and 76.2% (± 6.2% std), respectively. In case of recycling pre-treatment process (e.g., disassembly, size reduction, and separation), the technological levels was found to be approximately 82.2%, while the material recovery process followed by the pretreatment process was estimated to be approximately 68.5%. The results of reliability test for the expert survey showed that the values of coefficient of variation (CV) for the pre-treatment process and material recovery process by group category and recycling process are less than 0.5, which is a guidance limit for the coefficient. Based on the statistical tests (ANOVA and t-test), there is no significant difference of the recycling technological levels among the group category (large home appliances, small home appliances, IT equipment, and audio/video equipment. However, the statistical difference between the pre-treatment process and material recovery process within the group category existed (p-value < 0.05) using t-test. In this study, the results imply that there is still a need for developing a variety of more advanced recycling technologies of WEEE to effectively recover valuable metals and materials from it, especially in the fields of metal recovery and extraction processes.