Wasted meat & bone has generated as byproducts in the slaughtering process of livestock and also faced with demands for its recycling and environmental protection. Many studies have been conducted to recycle byproducts and carried out mainly on the crushing of bones and the vacuum packing technology of products. In this study, the crushing unit, transporting unit, separated unit and packing unit have designed for development of the crushing and packing systems. Also, to confirm the performance of this system, the experimental verification were carried out the working noise and packing weight.
PURPOSES: Using recyclable materials in asphalt pavement industry is one of the essential tasks not only for saving construction budgets but also for mitigating environmental pollutions. Over the past decades, several efforts have been made by road maintenance agencies to incorporate various recyclable materials into virgin asphalt paving mixtures. As a result, reclaimed asphalt pavement (RAP), which consists of old pavement material was selected as one of most widely used recyclable materials. In this paper, the effects of using different amounts of single-recycled RAP (SRRAP) and double-recycled RAP (DRRAP) on the low-temperature characteristics of asphalt mixtures were investigated.
METHODS: To evaluate the low-temperature characteristics of SRRAP and DRRAP mixtures, two experiments, the bending beam mixture creep test and semicircular bending fracture test were performed. The experimental parameters: creep stiffness, m-value, thermal stress, critical cracking temperature, fracture energy, and fracture toughness were computed then compared. RESULTS : RAP mixtures (SRRAP or DRRAP) showed lower mechanical performance compared with conventional asphalt mixtures. The differences became distinct with increased RAP addition. However, the performance differences between SRRAP and DRRAP mixtures were not significant in all cases, which indicate the possible application of re-recycling technology (DRRAP) in the asphalt pavement industry.
CONCLUSIONS : The addition of RAP to virgin asphalt can mitigate low-temperature performance despite the improvement in fracture performance observed in some cases. Therefore, using RAP (SRRAP or DRRAP) mixtures on inter or sublayer construction, but not on the surface layer, is recommended. Moreover, the possibility of applying double-recycling technology in asphalt pavement industry can be introduced in this study because not significant performance differences were found between SRRAP and DRRAP mixtures especially at low temperature.
PURPOSES : The purpose of this study is to analyze the performance life of hot central plant recycling (HCPR) and hot in-place recycling (HIR) pavements applied to the National Highway for the past 20 years and compare it with conventional hot-mix asphalt (HMA) pavement. METHODS: In order to analyze the performance life of recycling asphalt pavements, a comprehensive literature review was conducted to investigate the government law and official system for the use of recycling asphalt pavement in Korea and foreign countries. Next, the application information of using a hot central plant recycling and hot in-place recycling pavements in the national highway is collected from the database of pavement management system (PMS) and then their field condition is visually surveyed. Finally, the performance life of recycling asphalt pavements in the national highway is analyzed and compared with conventional hot-mix asphalt pavement. RESULTS: Institutions are encouraging the promotion of using recycled asphalt pavement through various legal systems in Korea as well as abroad. Based on analysis results for the average performance life of hot central plant recycling pavement applied to the national highway, the average performance life is estimated to be 10.2 years. However, the average performance life of in-place recycling pavement is estimated to be 6.5 years. However, it is expected to increase performance life after the HIR construction system is modified. CONCLUSIONS : Based on the limited data analysis of the performance life of recycled asphalt pavements, HCPR shows similar performance life to conventional asphalt pavement but HIR shows shorter performance life than conventional asphalt pavement. However, it is noted that all performance life data is very limited and it should be monitored and analyzed further.
1. 서론
최근 상온재활용 포장공법과 관련한 연구들이 국내외적으로 활발히 진행되고 있다. 그러나 배합설계 기준의 경우 각국마다 서로 다른 기준들을 제시하고 있으며, 또한 재활용 아스팔트골재의 치환율에 따른 범용적인 기준제시가 되고 있지 않다. 따라서 기존 배합설계 기준들에 대한 분석이 필요하며, 국내 요구 조건에 따른 기준제시도 필요한 현실이다.
2. 양생방법 및 양생기간 정립
본 연구에서는 기존 연구에서 제시된 배합설계 시 양생방법의 현장상황을 고려한 적용성을 고려하기 위해 아스팔트포장 내 함수비에 따른 변화를 고찰하고, 양생기간 결정을 위한 증발산 시험을 실시하였다. 또한 2일, 3일, 5일, 7일 마샬안정도(60℃ 수침)실험, 밀도 및 공극률 실험을 실시하여 양생기간별 영향 을 분석하였다.
3. 기층 상온 재활용 아스팔트 혼합물 배합설계 품질기준 검증
배합설계 특성치를 결정하기 위해 국내 가열재활용아스팔트 혼합물 지침 및 해외 상온재활용 아스팔트 포장의 문헌조사를 통하여 마샬안정도, 흐름값, 밀도, 공극률 및 ITS의 특성치 기준값 활용성을 검토하였다. 또한 기존채움재와 무기질 채움재의 고성능 기층 성능구현을 위한 역할특성을 분석하였다.
4. 결론
1. 고성능 기층 무시멘트 상온 재활용 기층포장 배합설계방법론을 정립하였고, 이를 통한 80% 치환율의 경우 배합설계 일례 결과, 개질 유화 아스팔트함량을 밀도 및 공극률을 고려하여 3% 최적 개질유화 아 스팔트 양을 결정하였다.
2. 본 연구진의 기존 제안한 40℃ 1일 양생이 꼭 필요함을 재확인하였고, 현장포설환경등과 밀도 및 공극 율을 감안하여 양생기간을 수정제안하였다.
3. 배합설계 시 재활용아스팔트골재의 입도 한계성을 확인하였으며, 신골재의 단입도 사용이 필요하며, 고성능기층을 위해 채움재 특성에 따른 증발효과와 강도증진 효과가 필요함을 알 수 있었다.
4. 본 연구결과와 기존 지침 및 문헌조사한 특성치의 기준값 선정가능성에 대한 실험을 진행하여 특성치 를 정립하였다.
PURPOSES: The national highways and expressways in Korea constitute a total length of 17,951 km. Of this total length of pavement, the asphalt pavement has significantly deteriorated, having been in service for over 10 years. Currently, hot in-place recycling (HIR) is used as the rehabilitation method for the distressed asphalt pavement. The deteriorated pavement becomes over-heated, however, owing to uncontrolled heating capacity during the pre-heating process of HIR in the field. METHODS: In order to determine the appropriate heating method and capacity of the pre-heater at the HIR process, the heating temperature of asphalt pavement is numerically simulated with the finite element software ABAQUS. Furthermore, the heating transfer effects are simulated in order to determine the inner temperature as a function of the heating system (IR and wire). This temperature is ascertained at 300 ℃, 400℃, 500℃, 600℃, 700°℃, and 800℃ from a slab asphalt specimen prepared in the laboratory. The inner temperature of this specimen is measured at the surface and five different depths (1 cm, 2 cm, 3 cm, 4 cm, and 5 cm) by using a data logger. RESULTS: The numerical simulation results of the asphalt pavement heating temperature indicate that this temperature is extremely sensitive to increases in the heating temperature. Moreover, after 10 min of heating, the pavement temperature is 36%~38% and 8%~10% of the target temperature at depths of 25 mm and 50 mm, respectively, from the surface. Therefore, in order to achieve the target temperature at a depth of 50 mm in the slab asphalt specimen, greater heating is required of the IR system compared to that of the gas. CONCLUSIONS : Numerical simulation, via the finite element method, can be readily used to analyze the appropriate heating method and theoretical basis of the HIR method. The IR system would provide the best heating method and capacity of HIR heating processes in the field.
2014년 온실가스 배출 최소화를 위한 포장도로 연구 중 친환경 저비용 에코아스팔트 도로포장 기술 개 발에서 저비용 상온 재활용 포장 공법 개발에 대해서 연구를 하고 있으며, 기존의 상온 재활용 포장의 배 합설계인자 영향분석을 바탕으로 본 연구에서는 기층 배합설계 검증 및 예비 시험포장에 대한 문제점과 해결방안에 대해 제시하였다.
본 연구진의 선행연구를 바탕으로 본 연구에서는 배합설계의 목적을 도로포장통합지침의 중교통량 품 질기준을 만족하기 위해 국내외 배합설계법의 자료 분석하여 배합설계법을 결정하였다. 배합설계법 선정 을 위해 입도기준을 기층의 역할목적을 감안하여 본 연구진의 선행연구에 제시된 기층의 입도상하한선 및 연구결과를 적용하였다. 결정된 배합설계 절차를 이용하여 저교통량과 중교통량 기층의 배합설계를 실시 하여, 실험실에서 결정된 입도설계를 바탕으로 혼합물 제작 후 마샬다짐기를 이용한 공시체를 만들어 실 내시험을 진행하였다. 실험 결과 공극율과 마샬안정도를 이용한 수침안정도 등이 기준에 부합하는 것을 확인하였으며, 예비 시험포장을 위한 배합설계를 진행 후 플랜트에서 생산된 시험포장 혼합물을 이용, 실 내시험을 통하여 배합설계를 검증하였다.
생산 플랜트 내 일부구간에서 예비시험포장을 진행하였다. 배합설계 검증 결과로 생산된 혼합물의 입 도분포가 상한선을 초과하였다. 예비 시험포장을 진행할시 혼합물 생산이 소규모로 이루어지다보니 보통 1배치 생산당 2~3분이 소요하지만, 예비 시험포장 당일 1배치당 45분의 생산시간을 소요하여 혼합물의 경화가 발생하였으며, 포설당시에는 생산된 혼합물의 기층 색깔 및 포설과정은 좋았으나 양생과정에서 에 코 채움재의 경화특성에 의한 조기경화가 발생하였다. 또한 생산 과정의 개질재 투입시 고형분의 분리가 발생하여 고형분이 침전이 되어 있었고, 개질 유화특성에 따른 혼합과정에 대한 개선이 필요함을 알 수 있었다. 인장강도비 개선을 위한 소석회의 경우 혼합과정과 다짐방법의 미비로 인한 포장표면으로 포장체 수분과 분리되어 블리딩 현상처럼 올라오는 등의 현상이 발생하였다.
본 연구진의 선행 연구 중 배합설계인자의 영향을 바탕으로 중교통량 대비 최적 배합설계를 제안하였 고, 최적입도설정 및 배합설계 결과로 석회석분 채움재에 비해 에코 채움재가 약 4%이상 공극율이 작아 지는 것을 확인할 수 있었다. 본 연구 결과를 토대로 예비 시험포장을 실시한 결과 플랜트 생산체계의 개 선안을 제안하였다. 개선된 CCPR(Cold Central Plant Recycled) 시스템 하에서 생산된 혼합물의 실내시 험을 통한 결과와 추후 본 시험포장을 통한 현장 적용성을 검증할 것이다.
최근 10년간 전세계적으로 아스팔트 포장을 재활용하는 기술이 급속도로 확산되고 있으며 노후 아스팔트 포장을 폼드 아스팔트 또는 유화 아스팔트를 사용하여 현장에서 바로 100% 재활용하는 현장 상온 재생 아스팔트 포장기술이 다양하게 적용되고 있다. 특히, 아이오와 주에서는 교통량이 적은 지방도로에서 기존 포장의 수명을 연장 시켜주는 현장 상온 재생 아스팔트 공법을 많이 적용하고 있다. 일반적으로 현장 상온 재생 아스팔트 포장층은 수분의 침투나 교통하중으로부터 보호하거나 포장설계를 만족시키기 위해 가열 아스팔트 포장으로 덧씌우기를 한다. 일반적으로 현장 상온 재생 아스팔트 포장층 위에 가열 아스팔트 포장으로 덧씌우기 할 시기는 대부분에 감독자들은 일정한 양생기간 또는 최대 함수비에 근거하여 결정하고 있다. 따라서, 본 연구에서는 감독자가 최적에 덧씌우기 아스팔트 포장 시기를 결정할 수 있도록 현장 상온 재생 아스팔트 포장층의 현장 함수비를 간단하게 측정하여 덧씌우기 시기를 결정할 수 있는 수분 감소계수를 개발하는 것이다. 먼저, 현장 상온 재생 아스팔트 포장층의 함수비를 TDR 함수량계를 사용하여 측정하였고 현장 상온 재생 아스팔트 포장이 시공되는 기간 동안에 강우량, 대기온도, 습도, 바람속도 등 기상정보를 수집하였다. 마지막으로 현장 상온 재생 아스팔트 포장의 초기 함수비, 대기온도, 습도, 바람속도를 변수로 하는 수분 감소계수를 개발하였다. 실제 현장 상온 재생 아스팔트 포장에서 측정한 값을 사용하여 개발한 수분 감소계수는 감독자가 연속적으로 현장 상온 재생 아스팔트 포장층의 함수비를 측정하지 않고 최적의 덧씌우기 포장 시점을 결정할 수 있다.