In this study, the structural integrity of the composite rocket motor case of a space launch vehicle was evaluated by conducting compression and bending tests. Two composite rocket motor case specimens with different stacking patterns were prepared for each test, and a dedicated jig was designed and manufactured. The test procedure was developed and applied separately for compression and bending tests. By performing these tests, the composite rocket motor case structural safety was assessed.
Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.
A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.
In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.
In this paper, the dynamic snapping of the 3-free-nodes spatial truss model was studied. A governing equation was derived considering geometric nonlinearity, and a model with various conditions was analyzed using the fourth order Runge-Kutta method. The dynamic buckling phenomenon was observed in consideration of sensitive changes to the force mode and the initial condition. In addition, the critical load level was analyzed. According to the results of the study, the level of critical buckling load elevated when the shape parameter was high. Parallelly, the same result was caused by the damping term. The sensitive asymmetrical changes showed complex orbits in the phase space, and the critical load level was also becoming lowly. In addition, as the value of damping constant was high, the level of critical load also increases. In particular, the larger the damping constant, the faster it converges to the equilibrium point, and the occurrence of snapping was suppressed.
조합하중 작용 시 현무암섬유 강화 복합재료(BFRP) 플레이트의 좌굴거동에 대한 해석적 연구를 유한 요소법(FEM)을 통하여 평가하였다. 복합재료 플레이트 내에서 고려될 수 있는 경계 조건, 치수의 종횡비 및 하중 조건과 같은 다양한 매개변수에 대한 영향성을 연구하였다. BFRP의 역학적 성질은 국내에서 제작된 시편을 이용하여 인장 및 면내 전단 실험을 통하여 구하였다. 산정된 물성치를 토대로 고전적인 판 이론을 이용하여 대칭으로 적층된 판을 우선적으로 분석하였다. 그 결과 2축 및 전단에 대한 조합 하중의 경우, 종횡비가 0.5∼1.0 일 때 좌굴하중이 빠르게 감소한다는 것을 알 수 있었다. 이와 반대로, 종횡 비가 1.0∼2.5 일 때는 좌굴하중이 약간 감소하는 경향이 보였다. 또한, 기존 축 방향 하중의 평면 내 전단 하중을 조합하여 추가할 경우 플레이트 판 내의 좌굴하중 감소가 약 4% 정도로서 큰 영향을 미치지 못함을 알 수 있었다.
곡률을 갖고 있는 쉘 부재들은 선박 및 육상구조 내에서 캠버와 선수, 선미, 파이프 및 저장용 탱크에 주로 사용되고 있다. 이러한 곡률 쉘 부재들은 기본적으로 원통형 실린더 부재의 일부라고 간주할 수 있다. 일반적으로 곡률의 존재는 압축하중 작용 시 좌굴강 도 및 최종강도를 증가시키는 것으로 알려져 있다. 본 논문에서는 이러한 영향을 확인하기 위하여 탄성대변형 시리즈해석을 수행하였으며, 매개변수의 영향을 분석하였다. 실린더의 최종강도 거동은 초기처짐과 해석모델링 방법에 큰 영향을 받는 것을 확인하였다.
In this paper, we present the result of investigations pertaining to the elastic buckling of simply supported columns with various cross-sectional dimensions but the same length and volume. In the investigations the accuracy of the analysis methods is studied and it was found that the result obtained by the successive approximations technique is the most accurate. In addition, the elastic buckling loads of columns with variable cross-section dimensions are obtained by the theoretical and numerical methods. From the results, it was found that the buckling loads obtained by the numerical methods are close to the buckling loads obtained by the successive approximations technique for the practical standpoints. Moreover, the buckling load of column with convexity in its middle is the highest while the buckling load of the tapered column is the lowest as expected.
A single-layerd steel lattice roof, which has 50m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by local snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the local snow load with geometrical imperfection decreased the level of buckling load significantly.
When an engine connecting rod is designed, it’s important to consider the buckling strength as well as deformation and durability of the rod. The buckling strength of a rod is mainly affected by the shape and area of shank cross-section and boundary conditions of its small and big ends. Buckling analysis by finite element method was carried out to evaluate the elastic buckling strength of a connecting rod that has non-uniform cross section areas. And the Merchant-Rankine formula was applied to predict the inelastic critical buckling load by considering the plastic buckling strength. Finally, the maximum allowable compressive load, which has 56.57kN, was predicted by considering the 1.7 buckling safety factor. It represents an approximately 40% greater than the maximum firing pressure.
본 논문에서는 대공간구조에 폭넓게 사용되는 단층 래티스돔의 비선형거동에 관한 비교 연구를 수행하였다. 단층 래티스돔은 특성상 두께가 얇은 쉘구조의 거동과 유사하므로 전통적인 쉘좌굴 이론을 적용하여 내력을 산출할 수 있으며 또한 이 결과를 유한요소해석 프로그램을 이용한 수치해석의 결과와 비교, 분석하였다. 쉘좌굴 이론을 이용하여서는 래티스 돔의 전체좌굴하중과 부재좌굴하중을 산정하였으며, 유한요소해석법을 이용하여서는 고유치 해석에 의한 좌굴하중과 기하학적 비선형 해석에 의한 극한하중을 각각 산정하였다. 래티스돔의 절점은 강절점 및 핀절점으로 각각 모델링하였다. 쉘좌굴이론에 의한 좌굴내력은 전체좌굴하중과 부재좌굴하중의 작은 값으로 결정되며 이 값은 유한요소해석을 이용한 고유치 해석보다는 비선형 해석에 의한 극한하중에 보다 근사한 값을 제공하였으며 또한 좌굴하중의 형식을 예측하는데에 유용하게 활용되었다.
This paper investigates the characteristics of unstable behaviour and critical buckling load by joint rigidity of framed large spatial structures which are sensitive to initial conditions. To distinguish the stable from the unstable, a singular point on equilibrium path and a critical buckling level are computed by the eigenvalues and determinants of the tangential stiffness matrix. For the case study, a two-free node example and a folded plate typed long span example with 325 nodes are adopted, and these adopted examples' nonlinear analysis and unstable characteristics are analyzed. The numerical results in the case of the two-free node example indicate that as the influence of snap-through is bigger; that of bifurcation buckling is lower than that of the joint rigidity as the influence of snap-through is lower. Besides, when the rigidity decreases, the critical buckling load ratio increases. These results are similar to those of the folded-typed long span example. When the buckling load ratio is 0.6 or less, the rigidity greatly increases.
Buckling, a form of failure happened to plated structures, is investigated in this study. The main focus is to investigate the effects of thickness of the plates having through-thickness holes on buckling when the plate is subjected to in-plane compression. Plates having length of 200mm and width of 100mm are chosen to have thickness in range from 0.50mm to 10mm. Two holes of diameters of 20mm are implemented in plates. The finite element procedure using ABAQUS is applied for analyses. Then using the Gerard and Becker equation compressive buckling coefficients, Kc, are calculated and presented to enable engineers to calculate buckling load for the desired plate with holes in specific dimension. In order to generalize the obtained results, verification analysis has been performed by taking plates having different dimensions from the original ones used in this study. The verification showed the capability of buckling coefficients to predict buckling stresses of plates in various dimensions.
본 연구에서 해양플랜트 구조물에 주로 사용하고 있는 알루미늄 합금 A6082-T6의 재료특성을 반영한 사각형 판에 대한 패치 로딩의 구조 안정성 문제를 검토하였다. 구조 안정성 문제를 검토 시 네 가지 패치 로딩 형태와 종횡비 효과, 주변지지조건을 적용하여 임계 탄성 좌굴하중을 산출하였다. 고유치 좌굴해석 간 사용한 요소는 4절점 쉘요소 shell181을 적용하였다. 패치 로딩을 받는 판은 균일 축 압축하중과 비교 시 상이한 탄성 좌굴거동이 발생되는 것을 관찰할 수 있었으며 하중형태와 위치, 종횡비 효과 등과 같은 변수에 대해 상당히 영향을 받고 있는 것을 확인할 수 있다. 또한, 종횡비(a/b) 1.0, 하중길이(rb) 200 mm 단순지지 사각형 판에서 패치 로딩 형태에 따른 임계 탄성좌굴하중은 67 %(하중 I), 119 %(하중 II), 76 %(하중 III), 160 %(하중 IV)이 각각 산출되었으며 하중 I과 III은 하중 II와 IV보다 훨씬 더 탄성 좌굴거동에 강한 것으로 판단할 수 있다.
Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.
This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.
가섭선 및 애자가 연결되어 있는 복잡한 구조물인 송전철탑의 3차원 모델링을 통하여 동특성을 파악하고, 풍하중에 대한 응답 특성을 정적, 동적 및 좌굴 해석을 가섭선의 절단 유무에 따라 분석하였다. 우선, 고유치해석을 통해, 송전철탑이라는 구조시스템이 일반 건축물과는 달리 극소수의 저차 모드가 구조물의 동적 거동을 좌우하지 않고, 상대적으로 많은 모드들이 동적 거동에 기여한다는 것을 확인하였다. 두 번째로, 정적 해석과 좌굴 해석을 통해, 대상 구조물이 정적인 개념의 풍하중에 대해서 구조적으로 안전하고 좌굴에 대해서도 충분한 안전율을 확보하고 있음을 확인하였다 그러나, 모든 가섭선이 단절되는 극단적인 경우에는 안전율이 상당히 낮아졌으며 이러한 경우에 구조물의 붕괴 및 전도를 방지할 대책에 대한 검토가 필요하다고 사료된다 마지막으로, 풍하중의 시간에 따른 변화를 고려한 동적해석을 통해, 풍하중의 동적 변동성분이 구조물의 응답을 증가시키고 있음을 확인하였다.
선체를 구성하는 판부재는 일반적으로 면내하중과 횡하중의 조합하중이 작용하게 된다. 면내하중으로서는 주로 전체적인 선체거더의 휨과 비틀림에 의한 압축하중 및 전단하중이 있다. 횡하중은 수압과 화물압력에 의해서 작용하게 된다. 이러한 하중의 요소들은 항상 동시에 작용하는 것은 아니지만 한 개 이상의 하중이 존재하고 상호작용하게 된다. 그러므로, 좀 더 합리적이고 안정적인 선박구조의 설계를 위해서는 이러한 조합하중이 선체판에 작용할 경우에 발생하게 되는 좌굴 및 최종강도거동의 상호관계를 좀 더 자세히 분석할 필요가 있다. 실제로 선체판은 슬래밍과 팬팅과 같은 충격하중을 제외하고는 상대적으로 작은 수압이 작용하게 된다. 본 연구에서는 조합하중을 받는 선체판부재의 거동에 있어서 최종한계상태 설계법에 기반을 둔 탄소성대변형 유한요소해석을 수행하였다. 본 연구에서는 압축하중과 횡하중이 판부재에 작용하였을 경우 횡하중의 크기에 따른 2차좌굴 거동의 영향을 탄소성대변형 유한요소해석(ANSYS)으로 분석하였다.
단층 래티스 돔은 작은 단면의 선 부재 조합으로 전체구조물이 구성되는 특성상 구성부재의 세장비, 부재 반개각 하중조건, 접합부 특성 등에 매우 큰 영향을 받으므로, 비선형 좌굴해석에 의한 좌굴하중을 사용해야 하지만 여러 가지 현실적 제약이나 문제점 등에 의해 이러한 것이 제대로 반영되지 않은 설계가 이루어지고 있다. 이러한 이유로 돔 구조물의 설계 시 부재의 과다 설계, 자유로운 형상 설계의 제약 등의 문제점들이 나타나는 것이 지금의 현실이다. 따라서 이 논문의 목적은 위에서 언급된 문제점을 해결하기 위하여 고유치 해석을 통한 선형 좌굴해석에 기초한 비선형 좌굴하중을 예측하고 이를 이용함으로서 보다 효과적인 설계를 가능케 하는 설계식을 제안하는 데 있다.