검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2023.12 KCI 등재 구독 인증기관·개인회원 무료
        본 연구에서는 운전 시뮬레이션을 사용하여 자율주행 환경을 구현한 후 3-수준 자율주행 조건에서 자율주행 차량 (automated vehicle: AV)으로부터 운전자에게 전달되는 제어권 인수 요구(takeover request: TOR) 정보의 양상(시각, 청각 및 시각+청각) 및 도로 형태(직선도로와 곡선도로)에 따라 운전자의 제어권 인수 시간(takeover time: TOT) 및 정신적 작업부하(제어권 인수 이후에 운전자들이 경험한 주관적 작업부하와 심장박동수에서의 변화)가 어떻게 차별 화되는지 분석하였다. 본 연구의 결과를 요약하면 다음과 같다. 먼저, AV로부터 TOR이 제시된 이후 실험참가자들 이 보인 TOT에 대한 분석 결과, TOR 정보양상의 측면에서는 시각 정보가 가장 빠른 TOT를 이끌어 낸 반면 청각 정보 조건에서 가장 느렸고, 도로 형태 측면에서는 직선도로 조건에 비해 곡선도로 조건에서의 TOT가 유의하게 더 느렸으며, 특히 청각 정보 조건에서 도로 형태에 따른 TOT에서의 차이가 가장 컸다. 둘째, 정신적 작업부하에 대한 분석 결과, TOR 정보가 시각 혹은 시각+청각적으로 제시된 조건에 비해 청각적으로 제시된 조건에서 주관적 작업부 하 측정치와 심장박동수 변화 크기 모두 전반적으로 더 낮았고 특히, 심장박동수 변화의 경우 이러한 경향은 곡선도 로 조건에서만 관찰되었다. 이러한 결과는 TOR 정보의 양상과 도로 형태에 따라 운전자의 TOT와 정신적 작업부하 수준이 달라질 수 있고, 특히 TOT가 빠를수록 정신적 작업부하 수준은 상대적으로 더 높아질 수 있음을 시사한다.
        2.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on experimental environments for testbeds during the development of QR Code-aware indoor mobility robots.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the driving directions of QR Code-aware movable robots during the development of QR Code-aware indoor mobility robots.
        4,000원
        6.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the driving operation techniques during the development of QR code-aware indoor mobility robots.
        4,000원
        7.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the moving control model during the development of QR code-aware indoor mobility robots.
        4,000원
        8.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the damping force of MRF(Magneto-Rheological Fluid) damper using Bingham-plastic model is studied and the performance of quarter car model using this damper is numerically analyzed. As a control algorithm, the sky-hook control is used for its convenience and effectiveness. The transmissibility of sprung mass and unspung mass is compared to that with the conventional passive damper and the feasibility of MRF damper is evaluated. And the design concept of fail-safe MRF damper is suggested to provide the damping force of conventional passive damper level in the case of controller malfunction. The control current and damping force is analyzed passing over the harmonic bumper.
        4,000원
        9.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        The aims of this paper is to develop a modular agricultural robot and its autonomous driving algorithm that can be used in field farming. Actually, it is difficult to develop a controller for autonomous agricultural robot that transforming their dynamic characteristics by installation of machine modules. So we develop for the model based control algorithm of rotary machine connected to agricultural robot. Autonomous control algorithm of agricultural robot consists of the path control, velocity control, orientation control. To verify the developed algorithm, we used to analytical techniques that have the advantage of reducing development time and risks. The model is formulated based on the multibody dynamics methods for high accuracy. Their model parameters get from the design parameter and real constructed data. Then we developed the co-simulation that is combined between the multibody dynamics model and control model using the ADAMS and Matlab simulink programs. Using the developed model, we carried out various dynamics simulation in the several rotation speed of blades.
        10.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel’s motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform’s target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.
        11.
        2015.11 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.
        12.
        2012.05 KCI 등재 서비스 종료(열람 제한)
        In this study, we aim to develop energy efficient walking and running robot with compliant leg. So, we propose the energy efficient locomotion control method. And, we experiment the proposed control method applying to the experimental robot with compliant leg. From the experiment, we look at whether the proposed control method can the robot walk and run energy efficiently.
        13.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.
        14.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        컨테이너의 신속한 이송 및 처리는 작업시간 단축에 의한 비용절감을 의미하므로 항만에서는 가능한 작업효율을 향상시키기 위해 다양한 노력이 추진되고 있다. 1990년대 중반부터 RMGC 및 RTGC 등의 크레인이 개발되어 컨테이너 이송 및 적재를 위한 필수장비로 널리 이용되고 있다. 특히 RTGC는 타이어 구동방식이므로 주행환경에 크게 제약을 받지 않는 장점도 있으나, 타이어 슬립, 타이어에 의한 샤시의 기울어짐 등 설정된 경로를 고정도로 주행해야 하는 목적달성에 장애가 되는 요인도 많아 레일 위를 주행하는 RMGC에 비해 자동화가 용이하지 않다. 이것은 무인 RTGC 시스템 구축을 어렵게 하는 가장 큰 요인이 되어 이와 관련한 기술개발 또한 미비한 수준에 이르고 있다. 따라서 본 논문에서 RTGC의 무인자동화에 있어서 가장 기초단계라고 볼 수 있는 수학적 모델링을 기반으로 한 고정도 주행제어기를 설계하고자 한다. 먼저 제어대상인 RTGC의 주행에 따른 운동특성을 분석하여 모델링을 수행한다. 기본적인 주행성능을 달성하기 위한 주행제어기를 설계하고 시뮬레이션을 통해 설계된 제어기의 유용성을 확인하도록 한다.
        15.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.
        16.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.
        17.
        2000.06 서비스 종료(열람 제한)
        In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.