Early warnings have been developed to provide rapid earthquake information, allowing people to prepare as much time as possible. However, since it takes several seconds for an earthquake warning to be issued, the blind zone is inevitable. To reduce the blind zone, information from a single observatory is used to operate an on-site earthquake warning. However, false and missed alarms are still high, requiring continued research and validation. This study predicted Peak Ground Acceleration (PGA) using the characteristic data to reduce false and missed alarms in on-site earthquake warnings. A machine learning prediction model was created using the initial P-wave parameters developed from the characteristic data to achieve this. Then, the model was used to predict the maximum ground acceleration in the southeastern region of the Korean Peninsula. The expected results for six target earthquakes were confirmed to have a standard deviation within 0.3 compared to the observed PGA and the values within ±2 sigma. This method is expected to help develop an on-site early warning system for earthquakes.
While the subduction zone earthquakes have long ground motion durations, the effects are also not covered in seismic design provisions. Additionally, the collapse risk of steel frame buildings subjected to long-duration ground motions from subduction earthquakes remains poorly understood. This paper presents the influence of ground motion duration on the collapse risk of steel frame buildings with special concentrically braced frames in chevron configurations. The steel buildings considered in this paper are designed at a site in Seattle, Washington, according to the requirements of modern seismic design provisions in the United States. For this purpose, the nonlinear dynamic analyses employ two sets of spectrally equivalent long and short-duration ground motions. Based on the use of high-fidelity structural models accounting for both geometric and material nonlinearities, the estimated collapse capacity for the modern code-compliant steel frame buildings is, on average, approximately 1.47 times the smaller value when considering long-duration ground motion record, compared to the short-duration counterpart. Due to the sensitivity to destabilizing P-Delta effects of gravity loads, the influence of ground motion duration on collapse risk is more profound for medium-to-high-rise steel frame buildings compared to the low-rise counterparts.
There are now many seismic observatory stations, excluding the acceleration monitoring network for infrastructures, of more than 300 operated by several public and governmental organizations across South Korea. The features of the site and properties of the stations were not investigated, and they have been assumed or guessed to estimate the site-specific seismic responses during the 2016 Gyeongju and 2017 Pohang earthquake events. For these reasons, various and intensive geotechnical and geophysical investigations have been conducted to quantify the site characteristics at 15 seismic stations selected in southeastern Korea. The VS profiles were, at first, obtained by performing only a downhole seismic test (DHT) at 7 stations, and were compared with those from a surface wave method. Then, the shear wave velocity (VS) profiles were deduced by combining three types of in situ seismic methods composed of a cross-hole seismic test, DHTs, and full-waveform sonic loggings at the 8 other stations, especially to complement the application limits of DHT and reduce the depth-dependent uncertainty in VS profile. The representative site characteristic profiles for each station regarding VS and VP with borehole stratigraphy and density were determined based on robust investigations. Various site parameters related to seismic responses at the seismic stations of interest were obtained for the site-specific geotechnical information, which would be useful to earthquake engineering practices.
Being in a stable continental region (SCR) with a limited history of instrumentation, South Korea has not collected sufficient instrumental data for data-driven ground motion models. To address this limitation, we investigated the suitability of the hybrid ground motion simulation method that Graves and Pitarka (2010, 2015) proposed for simulating earthquake ground motions in South Korea. The hybrid ground motion simulation method used in this study relies on region-specific parameters to accurately model phenomena associated with the seismic source and the wave propagation. We initially employed relevant models and parameters available in the literature as a practical approach. We incorporated a three-dimensional velocity model developed by Kim et al. (2017) and a one-dimensional velocity model presented by Kim et al. (2011) to account for the crustal velocity structure of the Korean peninsula. To represent the earthquake source, we utilized Graves and Pitarka’s rupture generator algorithm along with a magnitude-area scaling relationship developed for SCR by Leonard (2014). Additionally, we assumed the stress and attenuation parameters based on studies of regional seismicity. Using the implemented platform, we simulated the 2016 Mw5.57 Gyeongju earthquake and the 2017 Mw5.4 Pohang earthquake. Subsequently, we compared results with recorded accelerations and an empirical ground motion prediction equation at strong motion stations. Our simulations had an overall satisfactory agreement with the recorded ground motions and demonstrated the potential of broadband hybrid ground motion simulation for engineering applications in South Korea. However, limitations remain, such as the underestimation of long-period ground motions during the 2017 Pohang earthquake and the lack of a model to predict the ground motion amplification associated with the near-surface site response accurately. These limitations underscore the importance of careful validation and refinement of region-specific models and parameters for practically implementing the simulation method.
In stable continental regions, selecting appropriate ground motions for seismic design and dynamic response analysis presents significant challenges. This study evaluates the liquefaction potential of the Nakdonggang delta region, South Korea, by generating synthetic ground motion scenarios and applying a scenario-based liquefaction assessment approach. We utilized a hybrid broadband ground motion simulation method proposed by Graves and Pitarka (2010, 2015) to create bedrock ground motions for three hypothetical earthquakes (Mw 6.2 and 6.0) occurring along the Dongrae and Miryang faults. The generated synthetic ground motions were used as input for onedimensional nonlinear site response analyses, incorporating shear wave velocity profiles derived from surface wave inversion. The simulated ground motions demonstrated higher responses at short periods and relatively weaker responses at long periods compared to the Korean design spectra. This amplification of long-period components was attributed to the dynamic response of deep sedimentary layers, while high-frequency components were generally deamplified due to damping effects in shallow silty layers. Liquefaction susceptibility was assessed using surface ground motions derived from the site response analyses, following the SPT-based simplified method proposed by Idriss and Boulanger (2008). Results indicated high liquefaction potential across most sites for the Dongrae earthquake scenario, while liquefaction was unlikely for all sites under the Miryang-1 scenario. For the Miryang-2 scenario, liquefaction was predicted at some sites. Overall, liquefaction is expected at PGA values of approximately 0.13 g or higher, with sites exhibiting lower shear wave velocities being more vulnerable to liquefaction
The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.
Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.
The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.
유체-구조물-지반 상호작용을 고려한 액체저장탱크의 유한요소 모형을 제시하고, 비선형 지진응답 해석기법을 정식화한다. 탱크 구조물은 기하 및 재료 비선형 거동을 고려할 수 있는 쉘 요소로 모델링한다. 유체의 거동은 acoustic 요소로 구현하고, interface 요소 를 사용하여 구조물과 결합한다. 지반-구조물 상호작용을 고려하기 위해 지반의 근역과 원역을 각각 solid 요소와 perfectly matched discrete layer로 모델링한다. 예제 20만 kl급 액체저장탱크의 지진취약도 해석에 적용하여, 유연한 지반에 구조물이 놓인 경우 부지에 서의 암반노두운동의 증폭 및 필터링으로 인해 지진취약도의 중앙값과 대수 표준편차가 감소하는 것을 관찰할 수 있다.
일반적으로 속도 펄스를 가진 지반운동이 속도 펄스가 없는 지반운동에 비하여 구조물에 보다 큰 손상을 줄 수 있다고 알려져 있다. 지진가속도기록으로부터 속도 펄스의 유무의 판정과 이를 정량화하는 연구가 현재 많이 진행되어 오고 있다. 기존 지진기록들을 단 층으로 떨어진 거리를 기준으로 원거리 지진과 근거리 지진으로 구분하였다. 또한, 근거리 지진은 속도 펄스의 유무를 정량화하여 펄 스를 가진 지진과 펄스를 가지지 않은 지진으로 구분하였다. 최종적으로 각 지진그룹별로 40개의 원거리지진, 40개의 속도 펄스를 가 진 근거리 지진과 40개의 속도 펄스를 가지지 않은 근거리 지진을 선정하였으며, 총 120개 지진가속도 기록을 지진취약도 평가를 위 한 지진해석에 사용하였다. 세 그룹의 지진을 이용하여 납-고무받침과 탄성받침을 가진 두 종류의 예제교량에 대한 지진응답을 평가 하여 확률론적 지진요구도 모델을 작성하였다. 확률론적 지진요구도 모델을 이용하여 지진취약도 해석을 수행하여 속도 펄스의 유무 에 따른 지진취약도 영향을 분석하였다. 지진파의 속도 펄스 유무에 따른 지진취약도 곡선의 비교 결과로부터, 속도 펄스를 가진 지진 의 지진취약도가 속도 펄스가 없는 지진의 지진취약도가 약 3배~5배 정도 정도 크게 나타난다. 이는 속도 펄스를 가진 지진의 경우가 그렇지 않은 지진의 경우에 비하여 교량의 손상 피해가 크다는 것을 의미한다.
PURPOSES : In this study, an empirical approach was established to estimate the parameters of the resilient modulus based on various geotechnical properties of subgrade soils. METHODS : Multiple regression analyses were performed to analyze the relationship between resilient modulus (k1) and deformation. The most important factors are the #200 sieve passing ratio, moisture content, and dry unit weight of the soil. The applicability of this approach was verified using selected field data and the literature. RESULTS : The correlation between the results predicted using the prediction equation of the model constant (k1) and the actual k1-value was high. The applicability of the prediction equation was considered high owing to its high suitability with the existing data. The range of values obtained using the constant prediction equation of the proposed model was also judged to be reasonable. In the comparison of the CBR value of the subgrade material of the actual design section and the predicted elastic modulus (k1), almost no relationship was observed between the CBR and the model coefficient (k1). Thus, the estimation of the elastic modulus through CBR is likely to contain errors. CONCLUSIONS : Based on these results, the parameters of the universal model can be predicted using the stress-dependent modulus model proposed in this study.
In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.
This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.
Non-structural elements, such as equipment, are typically affixed to a building’s floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building’s structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.
This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.
This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m x 5 m x 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.
In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.
층상 반무한체에서의 확률론적 완전파형역산을 위한 Markov chain Monte Carlo (MCMC) 모사 기법을 정식화한다. Thin-layer method를 사용하여 조화 수직 하중이 작용하는 층상 반무한체의 지표면에서 추정된 동적 응답과 관측 데이터와의 차이 및 모델 변수 의 사전 정보와의 차이를 최소화하도록 목적함수와 모델 변수의 사후 확률밀도함수를 정의한다. 목적함수의 기울기에 기반하여 MCMC 표본을 제안하기 위한 분포함수와 이를 수락 또는 거절할지 결정하는 수락함수를 결정한다. 기본 진동모드 뿐만이 아니라 고 차 진동모드가 우세한 경우를 포함하여 다양한 층상 반무한체의 전단파 속도 추정에 제안된 MCMC 모사 기법을 적용하고 그 정확성 을 검증한다. 제안된 확률론적 완전파형역산을 위한 MCMC 모사 기법은 층상 반무한체의 전단파 속도와 같은 재료 특성의 확률적 특 성을 추정하는 데 적합함을 확인할 수 있다.
PURPOSES : In this study, high-viscosity grout for increasing ground stiffness is developed using industrial byproducts.
METHODS : Based on literature review, the viscosity and viscosity expression time of domestic and foreign anti-washout admixture underwater were evaluated. In addition, grout was prepared by mixing 5% to 40% of fly ash (FA) in a standard mixture. Flow, setting time, and compressive strength tests were conducted to evaluate the quality of the grout.
RESULTS : Experimental results show that the viscosity required is 35,000 to 40,000 cps, whereas the viscosity expression time required exceeds 300 min. As the amount of FA used for grouting increases, the physical and mechanical performances deteriorate. The strength of a test specimen manufactured underwater is lower than that of a test specimen manufactured under air, and the decrease on day 28 is lower than that on day 3. The FA applied to the grout should be less than 20%.
CONCLUSIONS : Although industrial byproducts, which exhibit high viscosity, offer excellent mechanical performance and are thus suitable as a solidifying agent for strengthening grout, their application in the field must be evaluated.