본 연구에서는 콘크리트지하차도 시공 시 수화열에 의한 열응력 분포 특성을 분석하여 시공 재료와 시공 과정에 따른 균열 발생 여부를 분석하여 설계 시에 균열을 억제할 수 있는 재료 특성과 시공 단계를 제시하는 방법에 대하여 연구하였다. 이러한 분석을 위해 열전달 이론을 도입하여 지하차도의 3차원 유한요소해석 모델을 개발하여 구조해석을 수행하였다. 1회 타설하는 콘크리트 부재의 부피가 지나치게 크면 매스콘크리트가 되기 때문에 수화열에 의한 균열이 발생하기 쉬우며 이러한 균열을 억제할 수 있는 방법으로는 크게 시공 단계를 적절하게 배치하는 것과 또는 이러한 균열을 방지 할 수 있도록 재료 특성을 바꾸어 시공하는 것으로 구분할 수 있다. 따라서 본 연구에서는 이를 위해 콘크리트 재료 성질의 시간에 따른 변화 특성 시멘트 종류 및 첨가제 유무에 따른 수화열 발생 특성, 시공 단계에 따른 구조물의 크기, 외부 환경조건 등을 고려하여 분석을 수행하였다.
매스콘크리트 균열 예측은 대부분 수치해석을 이용한 구조물 해석을 이용하여 예측된다. 그러나, 구조물 예측 결과는 예측에 사용되는 콘크리트 특성값(탄성계수, 자기수축, 크리프, 열팽창계수 등)에 크게 영향을 받기 때문에, 정확한 구조물 해석을 위해서는 콘크리트 특성에 대한 평가가 선행되어야 한다. 특히, 재령 초기에 빈번히 균열이 발생하는 매스콘크리트 구조물의 경우, 콘크리트 특성값은 온도, 습도와 같은 양생조건에 큰 영향을 받기 때문에 양생 조건을 고려한 콘크리트 특성 예측이 필요하다. 그러나, 건설 현장에서는 간단한 몇가지 실험 또는 모델식을 이용하여 콘크리트 특성을 평가하고 있으며, 이로 인하여 구조물 해석 결과의 정확성이 매우 낮다. 이 논문에서는 정확한 매스콘크리트 구조물 해석을 위하여, 콘크리트 배합 및 양생 조건을 고려한 초기재령 콘크리트 특성 예측 기법을 제안하였다. 이 기법에서 콘크리트 특성은 온도응력 실험 결과와 해석 결과를 비교하여 예측 된다. 온도응력 실험은 다양한 구속 조건 및 콘크리트 양생 조건을 모사할 수 있는 온도응력 측정 장치를 활용하였으며, 수화열 해석은 KAIST 콘크리트 연구실에서 개발된 CONSA/HS를 보완하여 사용하였다. 콘크리트 특성의 응력 민감도 분석 결과를 기반으로 평가할 콘크리트 특성을 결정하였으 며, 콘크리트 응력 해석 결과에 큰 영향을 미치는 열팽창계수, 탄성계수, 자기수축 및 크리프를 평가하 였다. 또한 예측된 콘크리트 특성은 다양한 콘크리트 특성 실험 결과 및 매스콘크리트 실험 결과와 비교하여, 예측된 콘크리트 특성의 정확성 뿐 아니라, 예측된 콘크리트 특성을 이용한 구조물 해석 결과의 정확성까지 검증하였다.
In this study, we confirmed the composition of the mineral admixture according to mixing ratio of admixtures on the low-heat cement for mass concrete, evaluated the heat properties of hydration through measurement of microheat of hydration.
The purpose of this study is to investigate correation between semi-adiabatic temperature and adiabatic temperature rise of ordinary portland cement(OPC) and ternary blended cement(TBC). And concrete adiabatic temperature rise factor was estimated by semi-hydration heat analysis test.
This study evaluated field application of low heat concrete using hydration heat analysis. The results of hydration heat analysis show that low heat concrete make sure of target thermal cracking index. Therefore, low heat concrete is suitable for field application.
Marine mass concrete mixture for floating structures is derived that can minimize heat of hydration and several construction methods are investigated to reduce thermal cracks. Analysis variables are type and amount of mineral admixtures, number of lifts and placing interval. Probability of thermal crack occurrence is evaluated.
In this study, hydration heat analysis of ternary blended concrete using mock-up structure was conducted in order to evaluate the temperature rise and crack index. The results of the analysis of hydration heat, it was found that it was convenient to obtain the minimum crack index and temperature rise of 3:5:2 mixing.
As the scale of structure becomes larger, the temperature crack of massive concrete structure is caused by the phenomenon which the mass concrete volume is restricted in the inside or outside part due to the temperature variations induced by the hydration heat of cement. So, we should prepare the method to reduce reasonably the hydration heat for the control of temperature crack. Therefore, this study presents the hydration heat analysis to verify the control effect of temperature crack when we consider to the different concrete mixtures.
The results of the durability analysis of chloride attack and analysis of hydration heat, it was found that it was convenient to obtain the service life and minimum crack index of TBC from a wide range of water-binder ratio. However, it was analyzed that the crack index was difficult to obtain.
In this study, the hydration heat and chloride migration properties of marine concrete with respect to the water-binder ratio and binder type are investigated experimentally. According to research results, TBC(Ternary Blended Cement) applied marine concrete has a large water-binder ratio, the heat of hydration was found to be reduced and the chloride ion diffusion coefficient was small.
부상식 면진기초 매스콘크리트의 시공이 6차에 걸쳐 분리타설로 이루어졌다. 선행 Mock-up실험을 통하여 각각 온도이력계측과 수화열해석이 병행되었고 최선의 양생조건과 시공순서가 부여되었다. 그 결과 수화발열과 냉각시 발생가능한 온도균열은 나타나지 않았다. 그러나 현행 콘크리트 시방서 매스콘크리트편의 온도균열지수의 간이식, 정밀식 모두 낮은 범위의 지수를 나타내었다. 이는 수화열 거동 및 균열예측에 있어 온도균열 발생확률이 높은 것으로 나타나, 실제 타설경과 내용과 상이함을 알 수 있었다. 각 시공단계의 계측 및 해석결과는 대상 부재의 크기와 형상을 고려하여 부재내부를 등온도분포영역과 상대적으로 온도경사가 높은 영역으로 분리할 필요가 있음을 추정케 하였다. 결론적으로, 구조형태별 수화발열/냉각시 온도변화에 보다 민감한 특성두께를 정의하여, 현실적인 온도균열지수를 계산하는 과정과 방법이 필요하다고 사료된다.
초기 재령의 매스콘크리트는 양생과정에서 높은 온도를 유발한다. 수화열 저감 기법 중 내부구속이 지배적인 구조물에서 단면의 내외부 온도차를 관리하는 방식은 그 활용도가 매우 높다. 그러나 수화 균열을 예방하기위해 열경사를 조절하는 현재의 제한적인 방법은 콘크리트 중심과 표면 사이에 미세하거나 거대한 균열을 유발할 수 있다. 특히 냉각파이프를 이용하는 방법은 온도의 상승시에는 적용될 수 있지만, 내외부 온도차이가 심한 온도하강시의 대책으로는 적합하지 않다. 따라서 이 문제에 대한 해결방안으로 가열파이프를 동시에 사용하는 모델을 제안하여 유한요소법으로 해석하였다. 해석 결과, 제안된 냉각파이프와 가열파이프를 동시에 사용하는 방법이 열경사조절에 가장 효과적이며 이를 통해 온도균열을 효과적으로 제어할 수 있을 것으로 판단된다.