검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 229

        5.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Runoff inhibitors can be used to suppress soil erosion and nutrient runoff. Their impact on soil ecosystems needs to be assessed. Thus, the purpose of this study was to investigate effects of runoff inhibitors on metabolic activities of soil microbes using starch, cationic starch, guar gum, xanthan gum, and PAM (polyacrylamide) as carbon sources. Responses of soil microbes to carbon sources were analyzed using Biolog EcoPlate. Soil was treated with each carbon source at 0.1, 0.5, and 1.0%. Carbon utilization was measured every week for three weeks. Average well color development (AWCD) was increased in the group treated with starch at 0.5 or 1.0% at 3 weeks after treatment. Effect of cationic starch was different depending on treatment period. This effect decreased at 3 weeks after treatment. Guar gum increased AWCD at all concentrations. Reactions of microbes were different depending on the type of carbon source. Xanthan gum increased AWCD at all concentrations, although amino acid decomposition showed no significant difference. On the other hand, PAM decreased AWCD at all concentrations. The Shannon H index representing functional diversity showed a tendency similar to that of AWCD for all treatments. These results indicate that soil treatments can have secondary effects on metabolic function of soil microbes and physical properties of soil.
        4,000원
        6.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to prepare bamboo-based activated carbons with surface modifications, focusing on carbon dioxide (CO2) capture in public indoor spaces. The surface of the activated carbon adsorbents was chemically modified through three steps: carbonization, steam activation, and chemical treatment using potassium hydroxide (KOH) and potassium sulfamate (KSO3NH2). The specific surface area and pore volume of the obtained adsorbent (BSAC-KN) were 1,246 m2/g and 0.74 cm3/g, respectively. The surface modification resulted in an adsorption capacity of up to 3.79 mmol-CO2/ g-AC for carbon dioxide. In addition, the expansion of the specific surface area and the enhanced physico-chemical interaction between the weak acidic CO2 molecules and the basic AC surface improved adsorption capacity.
        4,000원
        7.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the feasibility of integrating the carbon storage of grasslands in Gangwon province into the InVEST carbon storage and sequestration model using large-scale digital land cover maps. Land cover maps from 1980, 1990, 2000, and 2010, obtained from the Environmental Geographic Information Service, were analyzed, with 28 maps examined for each year. Grassland carbon storage in Gangwon province was estimated through the InVEST software. The findings indicated that the grassland area showed an increase in 1990, followed by a declining trend, contrasting with the continuous reduction observed in actual managed grassland areas. Discrepancies between mapped and managed grassland areas were attributed to the classification criteria of the land cover maps, which included non-forage land uses such as golf courses, ski resorts, and green spaces, resulting in overestimations of grassland areas. To enhance accuracy, the adoption of land cover maps with refined grassland classification criteria is necessary. Accurate representation of grassland areas in land cover maps is critical for reliable estimation of grassland carbon storage using the InVEST software.
        4,200원
        11.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.
        4,000원
        13.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        14.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The carbon concentration in the carburized steels was measured by electron probe microanalysis (EPMA) for a range of soluted carbon content in austenite from 0.1 to 1.2 wt%. This study demonstrates the problems in carbon quantitative analysis using the existing calibration curve derived from pure iron (0.008 wt%C) and graphite (99.98 wt%C) as standard specimens. In order to derive an improved calibration curve, carbon homogenization treatment was performed to produce a uniform Kα intensity in selected standard samples (AISI 8620, AISI 4140, AISI 1065, AISI 52100 steel). The trend of detection intensity was identified according to the analysis condition, such as accelerating voltage (10, 15, 30 keV), and beam current (20, 50 nA). The appropriate analysis conditions (15 keV, 20 nA) were derived. When the carbon concentration depth profile of the carburized specimen was measured for a short carburizing time using the improved calibration curve, it proved to be a more reliable and accurate analysis method compared to the conventional analysis method.
        4,000원
        16.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 oC under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.
        4,000원
        18.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 활성탄소를 이용하여 해양환경으로 유출된 침강 HNS를 현장에서 대응하기 위한 기술 개발을 목적으로, 활용 가능한 활성탄소의 조건을 검토하고 예상 소요량을 산출하였다. 입자 크기별 7종의 활성탄소들을 대상으로 침강 속도를 측정하였고, 침강 HNS로 분류된 클로로포름(CHCl3)에 대한 흡착용량을 실험실 규모 실험(lab-scale test)으로 측정하였다. 또한 7종 활성탄소들에 대하여 유해 물질함량과 용출 실험을 실시하여 용출된 유해물질 함량을 정량 분석하였다. 평균 침강속도(Mean particle-settling velocity)는 0.5~8 cm/sec의 범위로 8-20 mesh 경우를 제외하고 입자의 크기가 클수록 침강속도가 빨랐으며, 클로로포름에 대한 흡착효율은 대체로 입자가 작을수록 표면적이 넓어져 증가되었다. 또한 현장 투입 후 2차 오염가능성 확인을 위한 유해물질함량과 용출 실험 실험에서 >100 mesh의 활성탄소는 전함량분석결과가 아연(Zn)과 비소(As)가 수처리제기준보다 높고, 용출실험결과에서도 크롬(Cr), 아연(Zn), 비소(As)가 다른 활성탄소에 비해 높은 농도로 용출되었다. 흡착효율, 침강속도, 유해성분 용출량 등을 종합적으로 고려하여 현장 처리 적용 가능한 활성탄소는 20-60, 20-40, 2mm&down mesh 이었으며, 흡착용량을 최우선으로 판단하여 투입물량을 계산하면 최소 현장 투입 물량은 각각 0.82, 0.90, 1.28 ton/㎘ 이다.
        4,000원
        1 2 3 4 5