국제사회는 1992년 유엔기후변화협약(UNFCCC), 1997년 교토의정서, 2015년 파리협정, 2018년 IPCC ‘1.5℃ 특별보고서’ 채택을 통하여 온실가스 감축 목표를 세워 기후 문제에 대응하고자 하였다. 이러한 흐름에 대한민국은 2020년 ‘2050 탄 소중립 선언 및 비전을 선포하였고, 2021년 탄소중립기본법을 제정하였다. 이중 도로 건설도 환경영향평가의 대상으로 설정하여 인프라 시설물의 탄소중립에 노력을 기울이고 있다. 하지만 2011년 국토교통부의 ‘시설물별 탄소배출량 산정 가이드라인’ 외 구체적인 생애주기 분석 방법이 부재한 상황이며 기수행된 연구에서는 전과정이 아닌 특정 수명주기에 집중하였던 단점이 존재하였다. 특히 수명주기 중 사용단계는 시설물 이용, 유지관리, 에너지 및 용수 사용 등의 내용을 포함하며 2023년 세계 경제 포럼은 사용단계의 탄소배출량이 평균적으로 전체 탄소배출량의 70%를 차지한다고 발표하였 기 때문에 사용단계의 탄소배출량을 산정하는 것은 중요하다. 따라서 본 연구에서는 국제 표준 ISO 21930:2017의 전과정 평가 LCA(Life Cycle Assessment) 방법과 국토교통부의 ‘시설물별 탄소배출량 산정 가이드라인’을 따라 국내 탄소배출 계수를 기반으로 도로건설 전과정의 생애주기 구분을 하였고, 탄소배출량을 산정하였다. 이를 통해 국내 환경영향평가 방법의 보완에 기여하고자 한다.
PURPOSES : The actual service life of repair methods applied to cement concrete pavement is analyzed based on de-icing agent usage.
METHODS : Highway PMS data pertaining to de-icing agent usage are classified into three grades: low (1~5 ton/lane/year), medium (5~8 ton/lane/year), and high (greater than 8 ton/lane/year). The repair methods considered include diamond grinding, patching, joint repair, partial depth repair, and asphalt overlay on five major highways. The service life of each repair method is analyzed based on the usage level of the de-icing agent.
RESULTS : The service lives of the applied repair methods are much shorter than expected. It is confirmed that the service life afforded by diamond grinding, patching, and joint repair methods are not significantly affected by the use of de-icing agents, whereas that afforded by asphalt overlay and partial depth repair methods is affected significantly. The service life afforded by the asphalt overlay and partial depth repair methods decreases at high usage levels of the de-icing agent (greater than 8 ton/lane/year).
CONCLUSIONS : Among the repair methods considered, the service life afforded by partial depth repair and asphalt overlay is affected significantly by the amount of de-icing agent used. Additionally, the differences between the expected and actual analyzed service lives should be considered in the next-generation maintenance strategy for cement concrete pavements.
큰느타리의 수출시 유통 기한 연장을 목적으로 수확시 품질 등급, 대와 자실체 사이를 잘라낸 손질 처리 유무, 그리고 관행 OPP 봉지에 끈묶음한 포장 방법을 개선시켜 트레이용기에 넣은 후 밀봉처리시 효과를 구명하고자 하였다. 수확시 품질 등급은 수확전 재배사의 온도를 9~11˚C 낮추어 적응시킨 버섯을 특품으로, 관행 13~15˚C로 적응시킨 버섯을 상품으로 설정하였다. 선별한 특품과 상품 버섯을 이용하여 손질 및 포장방법으로 3처리구를 두었다. 첫째는 절단 손질 후 OPP 봉지에 넣어 끈묶음한 포장(Cut & OPP), 둘째는 손질하지 않고 OPP 봉지에 넣어 끈묶음한 포장(Uncut & OPP), 마지막으로 개선포장방 법으로 절단 손질한 후 트레이용기에 넣고 밀봉한 포장 (Cut & Tray)이었다. 포장 완료한 버섯 처리구를 0℃ 저장고에 42일간 보관하면서 포장 내부의 기체 조성, 품질 요인의 변화, 신선 품질에 대한 관능평가를 실시하였다. 특품과 상품의 버섯 모두 Cut & Tray, Cut & OPP, 그리고 Uncut & OPP 처리 순으로 전반적으로 신선도가 높게 유지되었다. 특품 버섯의 유통 수명은 Cut & Tray 처리의 경우 30일, Cut & OPP 처리의 경우 28일, Uncut & OPP 처리의 경우 21일이었고, 상품 버섯의 유통 수명은 Cut & Tray 처리시 22일, Cut & OPP 처리시 17일, 그리고 Uncut & OPP 처리시 14 일이었다. 신선 버섯의 품질에 영향을 미치는 요인은 갓과 대의 갈변과 부패 지수였다. 특히, 버섯 대의 아랫부분의 갈변과 그에 연관된 표피색 a*값과 b*값의 변화가 품질 저하의 주요인이었다.
PURPOSES : This study analyzes the service life of the repair methods of jointed plain concrete pavement (JPCP) on expressways in Korea using PMS data.
METHODS : The Korea Expressway Corporation PMS data acquired from five major expressways in Korea were used for the analysis. The service lives of the repair methods were considered for two different cases: 1) the previous repair methods had been completely rerepaired by another or the same method due to their damage, and 2) the current repair methods were still in use.
RESULTS : The service lives of D/G and section repair were shown to be at least 30 % and 50 % shorter than expected, respectively. Joint sealing and crack sealing exhibited a service life similar to that expected. The Mill-and-Asphalt-overlay method showed an approximately 30 % longer service life; this might be because some damage to the asphalt overlay is typically neglected until subsequent maintenance and repair. When multiple repairs were applied in series for an identical pavement section, the service life of repairs on previously damaged secti ons become even shorter compared to their first application.
CONCLUSIONS : It was found that the analyzed service life of most important repair methods did not reach the expected service life, and that the service life of the same repair method becomes shorter as applied to the previously repaired concrete pavement sections. These shorter service lives should be seriously considered in future JPCP repair strategy development.
PURPOSES : This study aimed to estimate road pavement life expectancy using Bayesian Markov Mixture Hazard Model, to support infrastructure asset management. In addition, the life expectancies for the pavement condition index were compared among regional construction and management administrations.
METHODS : Eleven years of National Highway road pavement monitoring data fused with ESAL (Equivalent Single Axle Loads), SNP (Structural Number of Pavement, an indicator of structural capacity), and average low temperature, total rainfall, and de-icing were used for the deterioration modeling. Deterioration modeling was performed through the Bayesian Markov Mixture Hazard Model.
RESULTS : The expected life expectancy of the crack was estimated at 12.28 to 18.51 years, rut depth was estimated at 15.93 to 25.3 years, and the International Roughness Index was estimated at 10.44 to 14.33 years. It was also confirmed that the heterogeneity factor proposed in the Bayesian Markov Mixture Hazard Model could be used to analyze group characteristics and differences in the benchmark.
CONCLUSIONS: This study provided important information in that it compared the life expectancies and structural characteristics of the pavement condition indexes among regional construction and management administrations. Based on this result, it is expected that a pavement structure design and maintenance strategy suitable for deterioration characteristics among regional construction and management administrations will be established.
PURPOSES: This study determines the life of asphalt overlay over old concrete pavements for various times of overlay, using the actual 30- year performance history of the Jungbu Expressway. The results from this study can be used as the basis for decisions on the proper time for overlay, and can also provide information for life cycle cost analysis.
METHODS : The maintenance history of the Jungbu Expressway and traffic database 30 years after construction were analyzed. The durations between the first overlay and subsequent overlay for each section of the pavement were analyzed for the entire Jungbu Expressway. The durations were analyzed in terms of both years and the ESAL traffic volumes.
RESULTS : 1. The life of the asphalt overlay over the old concrete pavements depended on the time of overlay in terms of both age and cumulative ESALs. A strong correlation was observed between the overlay life and the cumulative ESALs at the time of overlay. 2. The life of the second overlay at the same section was significantly shorter than the first overlay. For JCP, the average lives of the first and second overlays were 6.1 and 2.4 years, respectively. For CRCP, they were 4.8 and 2.7 years, respectively. The main reason for the shorter life of the overlay for CRCP may be that the overlay time was generally later than that for the JCP. 3. The life of the overlay was analyzed according to its materials. SMA exhibited the best performance, followed by CRM.
CONCLUSIONS: Life of the overlay reduced with the time of overlay especially in terms of cumulative ESALs, and the life of the second overlay at the same section was significantly shorter than the first overlay. The results can be used in the decision making of the time of overlay and in the life cycle cost analysis.
PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS: For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS: The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination (R2) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as R2 had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.
PURPOSES : The purpose of this study is to analyze the performance life of hot central plant recycling (HCPR) and hot in-place recycling (HIR) pavements applied to the National Highway for the past 20 years and compare it with conventional hot-mix asphalt (HMA) pavement. METHODS: In order to analyze the performance life of recycling asphalt pavements, a comprehensive literature review was conducted to investigate the government law and official system for the use of recycling asphalt pavement in Korea and foreign countries. Next, the application information of using a hot central plant recycling and hot in-place recycling pavements in the national highway is collected from the database of pavement management system (PMS) and then their field condition is visually surveyed. Finally, the performance life of recycling asphalt pavements in the national highway is analyzed and compared with conventional hot-mix asphalt pavement. RESULTS: Institutions are encouraging the promotion of using recycled asphalt pavement through various legal systems in Korea as well as abroad. Based on analysis results for the average performance life of hot central plant recycling pavement applied to the national highway, the average performance life is estimated to be 10.2 years. However, the average performance life of in-place recycling pavement is estimated to be 6.5 years. However, it is expected to increase performance life after the HIR construction system is modified. CONCLUSIONS : Based on the limited data analysis of the performance life of recycled asphalt pavements, HCPR shows similar performance life to conventional asphalt pavement but HIR shows shorter performance life than conventional asphalt pavement. However, it is noted that all performance life data is very limited and it should be monitored and analyzed further.
포장의 공용수명은 교통량, 기후, 포장강도, 차량하중 등 다양한 인자들의 영향을 받고 있으며 특히 교 통하중 특성과 기후, 포장의 상・하부구조 등은 포장의 수명에 큰 영향을 주는 것으로 알려져 있다. 하지 만 측정에 따른 오차, 조사구간의 불일치등에 따른 다양한 잠재오차들로 인해 다양한 인자들을 고려한 공 용수명의 예측에 관한 연구가 어려운 실정이다. 따라서 본 연구에서는 다중회귀분석기법을 활용하여 포장 의 수명에 영향을 미치는 주요인자를 선정하고 인공지능 분석기법 중의 하나인 신경망 분석기법(Neural Network Analysis)을 활용하여 아스팔트포장의 공용수명을 예측하고 이를 다중회귀분석의 분석결과 비 교・분석하였다.
먼저, 최근 3년간의 일반국도를 대상으로 조사가 이루어진 아스팔트포장의 수명 데이터를 기준으로 해 당 구간의 누적 교통량(AADT: Average Annual Daily Traffic), 누적 환산축하중(ESAL: Equivalent Single Axle Loads), 포장상부구조(보수층, 표층, 기층), 포장하부구조(보조기층, 동상방지층), 포장강도, 유지보수 지역(관리청)등의 다양한 요인들을 고려한 다중회귀분석 결과 누적교통량, 포장상부구조, 포장하 부구조, 유지보수 지역(관리청)이 유효한 변수로 선정되었다.
본 연구에서 인공신경망분석을 위해 활용한 다층 퍼셉트론(Multi layer Perceptron)기법은 입력층과 출력층 사이에 하나 이상의 은닉층(Hidden Layer)이 존재하게 되며 분석 알고리즘으로는 역전파 알고리 즘(Backpropagation algorithm)을 활용하였다. 분석을 위해 입력층에는 독립변수에 해당되는 누적교통 량, 포장상·하부구조, 유지보수지역의 4가지 변수를 입력하였으며 출력층에는 포장의 공용수명을 입력 하였다. 분석데이터는 70%를 학습, 15%를 검정, 15%를 테스트를 위해 활용하였으며 나아가 은닉층 신경 망(hidden neuron) 개수의 변화를 고려한 시나리오 분석을 수행하였다. 분석결과, 다중회귀분석에 비해 인공신경망 분석기법의 예측력이 뛰어난 것으로 나타났으며 은닉층 신경망(hidden neuron)의 개수가 과 대해지는 경우에는 인공신경망 자체의 예측력이 감소하는 것으로 나타났다.
일반국도의 연장 및 공용기간의 증가로 포장상태가 불량한 구간이 증가하고 이로 인한 유지보수비용이 증가하고 있다. 제한된 예산으로 일반국도를 효율적으로 관리·감독하기 위하여 포장관리시스템(PMS, Pavement Management System)이 1980년대 말 도입된 이후 현재 한국건설기술연구원에서 국토교통부 로부터 위탁을 받아 운영 중이다. 일반국도 포장관리시스템에는 다양한 종류의 유지보수 공법이 적용되고 있다. 특히, 아스팔트 포장의 소성변형이 급격히 증가하여 2000년대 초반 개질아스팔트 포장(PMA, Polymer Modified Asphalt), SMA(Stone Mastic Asphalt)와 같은 장수명 포장이 도입되기 시작하였다. 하지만 이러한 장수명 포장은 일반 아스팔트 포장과 달리 보수구간 및 공용기간이 적어 공용수명 예측모 형 개발에 필요한 충분한 데이터를 확보하기 어려운 실정이다. 따라서 본 연구에서는 공용수명 자료의 특 성을 고려하여 일반국도 아스팔트 포장의 공용수명예측모형을 개발하였다. 분석대상구간은 일반국도에서 연장이 긴 남북방향 노선 5개(1, 3, 5, 7, 31호선)와 동서방향 5개 노선 (2, 4, 6, 24, 34호선)에 대한 일반국도 모니터링 구간을 교통량과 환산교통량을 기준으로 각 2그룹으로 구분하여 사용하였다. 일반국도 포장관리시스템은 포장상태를 균열률과 소성변형, 종단평탄성을 적용하 고 있으나 본 연구에서는 공용수명을 결정하는 포장상태지표로 균열률을 적용하였다. 그림 1은 일반포장 과 장수명포장이 적용된 구간에서 나타나는 공용수명에 따른 균열률의 변화를 나타낸다. 공용수명 예측모 형은 일반포장과 장수명 포장으로 구분하여 결정론적 방법론인 일반 회귀모형방법론(직선,곡선)과 확률론 적 방법론인 마르코프, 생존확률 방법론을 적용하였다. 또한, 현재의 공용수명 자료 특성이 고려된 다양 한 공용수명예측모형의 검증과 활용방안을 제시하는 것을 목적으로 한다.
PURPOSES: The purpose of this study is to analyze the service life of expressway pavement based on both traffic volumes and use of deicing chemicals.
METHODS: A database was built using expressway rehabilitation history information from over the last decade. In order to estimate the service life of expressway pavement, various analysis methods were considered, and a decision was made to perform analysis using a method based on an accumulated rehabilitation ratio. The service life of expressway pavement was then analyzed by classifying the scale of traffic volume and extent of de-icing chemicals used.
RESULTS: The service life of PMA and SMA ranged from 7.8 to 10.6 years and from 9.9 to 12.0 years, respectively. The service life of JCP ranged from 16.0 to 22.2 years, and the service life of CRCP was 33.5 years on average. Results of assessing service life according to traffic volumes and de-icing chemicals showed that the lower the traffic volumes were, the greater the service life of PMA and JCP, and the less that de-icing chemicals were applied, the greater the service life of JCP.
CONCLUSIONS : The dependence of expressway pavement service life on traffic volumes and de-icing chemicals makes it possible to apply LCCA for regional maintenance plans and cost-effective selection of expressway pavement type.