All structures can not be perfect due to geometric or material initial imperfections. Initial imperfections are an important factor in determining the buckling mode and are known to be important factors in evaluating the actual buckling strength. The DNV-RP-C202 design standard limits the longitudinal stiffener spacing. However, the criteria for the stiffener spacing presented in DNV-RP-C202 is a guideline derived from the curved panel theory of perfect cross-sectional shape without initial imperfections. In this study, considering geometric initial imperfections, the transition point of stiffener spacing where longitudinal stiffeners affect the buckling strength of reinforced steel wind turbine tower is analyzed using finite element analysis program. The results of finite element analysis compared with theoretical results based on the perfect shape. As a result, a more reasonable stiffener spacing considering the initial imperfections was suggested.
Recently, for efficiency increase of the wind turbine tower, turbine has been enlarged and installation location has been transferring to offshore. The importance of the support structure is emphasized when a wind turbine tower is installed on offshore. The support structure is influenced not only by the system operating loads but also by various marine condition loads. Accurate and safe design is essential because the connection between the support structure and the wind tower can be relatively fragile. In particular, the type of foundation pile and sleeve grout connection were adapted from DNV, API, and ISO that are typically used for wind towers, and they have been continuously studied by many researchers. However, the experimental results by researchers are different from the design equations, and it needs to modify the formula according to connection properties and material. Therefore, this study investigates the design equation presented in existing design criteria and the results of research conducted by existing researchers, and analyzes ultimate strength and failure modes.
This study investigates dynamic characteristics of a 2MW wind turbine structure by long-term response monitoring with accelerometers, tiltmeter and strain gauges. The object wind turbine structure is located in Jeju Island, Korea. The natural frequency and damping ratio were evaluated by least-square frequency domain decomposition and random decrement technique using acceleration response data. As a result, it was found that natural frequencies with 1st, 2nd and 3rd modes, and blade passing frequencies with 1P, 2P and 3P were clearly showed from power spectral densities of acceleration reponses. Furthermore, 1st model frequencies were almost constant with increase in standard deviations of acceleration responses. Another notable observation was that when standard deviations of acceleration responses were small, damping ratios showed to diverge. However, when standard deviations of acceleration responses had large values, damping ratios were converged to about 0.5%.
Cylindrical steel shell sections have been applied in various engineering fields particularly in recent installations of wind turbine towers. Hence, many researchers are interested in studying cylindrical steel shell structures. However, studies on the effect of the presence or absence of openings are insufficient. Thus, the design criteria for the opening as well as the behavior of wind turbine tower are not clearly presented. Therefore, this study examines the ultimate strength and the behavior of wind tower in consideration of openings, presence of stiffeners, changes in opening width, and thickness variation of stiffeners. ABAQUS, a universal finite element analysis program, was used in to conduct this research. Finally, the results of this study can be a reference for the design and production of wind towers with openings.
Recently, wind power has received attention as one of remarkable renewable energy resources, and worldwide researches about wind power are actively being proceeded. Wind turbine tower has a major role for safety in the wind turbine systems. It is necessary for design tower structure to consider various environmental conditions. Earthquake, as one of the such environmental loads, is ground motion that applied to bottom of the tower structure and has a possibility of critical effect to the wind tower structure. There are various ways for seismic analysis, but design specifications that are in use do not suggest detailed method for seismic analysis. In this study, seismic responses are analyzed through different ways and the adequacy of seismic design methods is examined.
This study analyzes buckling in the lower segment of a tubular steel shell that exhibits the characteristics of a 3MW wind tower with opening and reinforcement. Analytical method using parametric equations based on Eurocode 3 - Design of Steel Structures and numerical method of finite element are used to analyze the critical meridional buckling stress. ABAQUS, a finite element program, is used for the numerical method analysis. Four different cases of tubular steel tower is modeled: without door opening and without reinforcement; with door opening and without reinforcement; without door opening and with reinforcement; and with door opening and with reinforcement. Using the ABAQUS, a linear buckling analysis is done for all cases to recognize five of its buckling mode shapes and its corresponding eigenvalues. Mode shapes from the previous analysis are considered in performing the non-linear analysis using Static Riks. Buckling capacity and its trends in the localized area near the opening is investigated, tabulated and shown in illustrative charts. Moreover, comparison is made between the parametric and finite element analyses.
In this study, a circular tower, a modular tower and a multi-column tower were subjected to wind tunnel test and CFD (Computational Fluid Dynamic) simulation. A modular tower with an octagonal cross-section is designed for easy transportation during construction. A multi-column tower with four secondary columns, which have smaller cross-sectional area relative to the main column, is designed for mitigating wind load. Their mean wind force coefficients were obtained through wind tunnel test and CFD simulation, which were carried out by Daewoo Institute of Construction Technology. Their results are compared to each other to verify the reliability of calculated mean wind force coefficient. Difference between mean wind force coefficient values obtained from wind tunnel test and CFD simulation is shown to be within 10% for a circular tower and a multi-column tower, and slightly above 10% for a modular tower.
The research team is developing design and construction technologies for 10Mw steel and 3Mw composite wind towers. Regulations related to land transport of wind towers significantly affect the constructability and economical efficiency of wind tower construction projects. Therefore, it is important to develop guidelines for wind tower construction which consider the regulations. This study investigates regulations and practices of land transport of wind towers as a basic study for the construction guidelines of wind towers.
해상풍력발전단지 발전량의 보다 정확한 예측을 위해 발전단지 예정지 인근에서 측정된 풍속데이터가 반드시 필요하다. 풍속데이터 확보를 위해서는 해상기상탑을 설치하는 방법과 인근 해안가나 섬에 풍속계측타워를 설치하는 방법이 있다. 본 연구에서는 인근 섬에서 측정한 풍속데이터와 WAsP 방법을 이용하여 해상풍력발전단지의 발전량을 예측할 경우에 섬의 지형 및 지면조도의 변화에 따른 발전량 예측값의 민감도를 분석하여 섬의 형상의 불확실성이 발전량 예측에 미치는 영향을 정량적으로 파악하였다. 계측타워의 풍속측정 높이가 높아질수록 섬의 지형 모델링 오차가 발전량 예측에 미치는 영향이 작아졌으며, 섬의 지면조도 변화에 따른 발전량 변동은 미미한 것으로 나타났다.
A standard design section of a FRP DSCT wind power tower supporting 3MW was suggested and designed through AutoDSCT and CoWiTA programs. The thicknesses of the FRP tubes were optimized and by using the parameters of designed tower, the performance of the new type wind tower was evaluated via FAST program.
Based on the study of rapid construction method for concrete tower for offshore wind farms, it was found that the precast concrete segment was effective to achieve short term construction on bad weather condition. Also 20m length of segment was selected for tower installation to use same crane carrying nacelle.
Presently, the wind power tower grows actively in all countries of the world as the part of renewable energy securing. Recently, as to the wind power tower, the advance to and diversification of the wind power tower form and material are made. but the maintenance manual about the wind power tower in which this foundation is based is insufficient. therefore, the object is that in being safe and maintaining efficiently the wind power tower, by developing the maintenance manual about the fundamental vulnerable element the life span improvement of the wind power tower is planned and it contributes to the maintenance management technology development.
Probabilistic risk of an offshore wind turbine tower-monopile foundation structure is investigated using in this paper. It can consider both soil-structure-fluid coupled effect in the system and a large amount of variability in both ocean environmental load and soil resistance.
고강도 그라우트재가 적용된 해상 풍력 발전 타워 자켓-파일 연결부의 설계를 위하여, 국외 해상풍력발전 타워 설계기준에서 제공하고 있는 그라우트 연결부 설계기준을 검토하였다. 해상 풍력 발전 타워 자켓-파일 기초의 연결은 sleeve의 내측과 파일의 외측에 링 모양의 전단키를 설치하고, 그 사이를 모르터로 채워 연결하는 방식으로 적용된다. 현재 DNV-OS-J101 및 NORSOK 등의 설계기준에서는 모노파일의 연결부 형식과 자켓-파일 연결을 모르터를 이용한 연결방법으로 설계기준이 정립되어 있으나, 설계기준별로 추천하고 있는 그라우트재의 강도는 상이하다.
본 연구에서는 콘크리트의 압축강도(fck), 전단키의 높이(h), 전단키의 간격(s) 및 그라우트 간격(tg)에 따른 연결부의 강도를 분석하기 위하여, 재료비선형 유한요소해석을 이용하여 구조적 거동분석을 수행하였다. 전단키의 간격에 따른 모르터와 전단키의 파괴양상을 확인하였으며, 이를 설계기준에서 제시하고 있는 강도와 비교하였다. 해석 결과를 이용하여 설계기준에서 제시하고 있는 전단키의 간격별 파괴모드와 유한요소해석결과의 파괴모드를 비교분석하여, 고강도 그라우트재의 적용성을 평가하였다.
신재생 에너지에 대한 세계적인 관심이 증대됨에 따라 풍력발전시장의 성장 및 대형화 또한 지속적으로 이루어지고 있으며 이에 대한 구조적 특성 분석 및 해석에 대한 연구가 활발히 진행되고 있다. 풍력발전타워의 형식 가운데 가장 많이 이용되고 있는 원형 강관타워는 여타 토목구조물에 비해 상대적으로 간단한 모델로 구성되지만 구조물의 특성 상 불규칙적인 동적하중이 지속적으로 작용하며 이에 대해 적절한 동적 거동 분석이 필요하다. 구조물의 해석에 있어 정밀한 해석모델을 이용한 해석은 간단한 모델의 그것에 비해 정밀한 결과를 보일 수 있지만 상대적으로 많은 노력과 시간을 요구한다. 효율적인 구조해석을 위해 해석에 사용되는 모델은 가능한 한 간단해야 하지만 구조물의 특성을 반영하지 못 할 정도로 지나치게 간소화해서는 안 된다. 원형 강관 풍력발전타워에 대한 구조해석은 쉘 요소 및 보 요소를 통해 많은 연구가 진행되고 있으며 보 요소 모델에 대한 해석의 편의성을 이용한 해석 시 Tapered 쉘 요소를 주로 Stepped-Beam으로 묘사하여 해석에 이용한다. 본 연구에서는 원형 강관 풍력발전타워의 모델링 방법에 따른 동적 거동을 분석하고 간소화 모델에 대한 구조물의 특성 반영정도를 검토하였다.
Wind Turbine Tower takes about 26.3% of overall wind turbine cost. So tower shell design is very important part. When designing tower eigenfrequency, strength analysis, fatigue strength analysis, buckling analysis and flange connection analysis have to considered. This paper contains procedure of tower analysis and compare ABAQUS result with design specification