결과 내 재검색





        검색결과 53

        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As technologies have been more quickly developed in this 4th Industry Revolution era, their application to defense industry has been also growing. With these much advanced technologies, we attempt to use Manned-Unmanned Teaming systems in various military operations. In this study, we consider the Location-Routing Problem for reconnaissance surveillance missions of the maritime manned-unmanned surface vehicles. As a solution technique, the two-phase method is presented. In the first location phase, the p-median problem is solved to determine which nodes are used as the seeds for the manned vehicles using Lagrangian relaxation with the subgradient method. In the second routing phase, using the results obtained from the location phase, the Vehicle Routing Problems are solved to determine the search routes of the unmanned vehicles by applying the Location Based Heuristic. For three network data sets, computational experiments are conducted to show the performance of the proposed two-phase method.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Maintaining sea superiority through successful mission accomplishments of warships is being proved to be an important factor of winning a war, as in the Ukraine-Russia war. in order to ensure the ability of a warship to perform its duties, the survivability of the warship must be strengthened. In particular, among the survivability factors, vulnerability is closely related to a damage assessment, and these vulnerability data are used as basic data to measure the mission capability. The warship's mission capability is usually measured using a wargame model, but only the operational effects of a macroscopic view are measured with a theater level resolution. In order to analyze the effectiveness and efficiency of a weapon system in the context of advanced weapon systems and equipments, a warship's mission capability must be measured at the engagement level resolution. To this end, not the relationship between the displacement tonnage and the weight of warheads applied in the theater level model, but an engagement level resolution vulnerability assessment method that can specify physical and functional damage at the hit position should be applied. This study proposes a method of measuring a warship’s mission capability by applying the warship vulnerability assessment method to the naval engagement level analysis model. The result can be used as basic data in developing engagement algorithms for effective and efficient operation tactics to be implemented from a single unit weapon system to multiple warships.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we performed thermal safety design of the electric module of a heat-loaded equipment with consideration of its heat dissipation performance. Initially, we calculated the heat dissipation of natural convection to choose a cooling method. Based on this, we found that some modules required forced convection and selected an air-cooling method with an outdoor temperature of 43 degrees Celsius, which is the maximum temperature in Korea. Prior to module production, we performed thermal analysis of each module and proceeded with a design to increase the thermal conductivity of the module as a primary step, and subsequently proceeded with Heat Sink design to maximize the heat dissipation performance. After considering various constraints according to the system requirements and designing the cooling path, we experimentally and analytically secured thermal safety at the operating temperature of the equipment.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수많은 함정용 채프들은 폭발에 의해 확산되어 채프운을 형성하며, 채프운은 허위 레이더 반사 단면적을 생성하여 적의 레이더를 기만한다. 본 논문에서는 전산유체역학-이산요소법 단방향 연동 기법을 기반으로 공기 중에 분포하는 함정용 채프운의 시공간 분포 를 해석하는 수치적 프레임워크를 구축하고 바람의 방향과 속도, 채프 카트리지의 초기 각도와 폭발 압력이 채프운 분포에 미치는 영 향을 분석하였다. 채프운의 확산은 폭발에 의한 방사형 확산, 난류와 충돌에 의한 전 방향 확산, 낙하 속도 차이에 의한 중력 방향 확산 과 같이 세 단계로 구분되는 것을 확인하였다. 바람은 채프운의 평균 위치를 이동시켰으며, 항력에 의한 확산 효과는 나타나지 않았다. 카트리지 초기 각도에 따라 폭발에 의한 방사형 확산 방향이 달라졌으며, 각도가 지면과 수직에 가까울수록 더 넓게 확산되었다. 폭발 압력이 증가할수록 채프운은 더 넓게 확산되었으나 중력 방향으로는 분포 차이가 작았다.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Gas turbine engines are widely used as prime movers of generator and propulsion system in warships. This study addresses the problem of designing a DS-based PID controller for speed control of the LM-2500 gas turbine engine used for propulsion in warships. To this end, we first derive a dynamic model of the LM-2500 using actual sea trail data. Next, the PRC (process reaction curve) method is used to approximate the first-order plus time delay (FOPTD) model, and the DS-based PID controller design technique is proposed according to approximation of the time delay term. The proposed controller conducts set-point tracking simulation using MATLAB (2016b), and evaluates and compares the performance index with the existing control methods. As a result of simulation at each operating point, the proposed controller showed the smallest in , which means that the rpm does not change rapidly. In addition, IAE and IAC were also the smallest, showing the best result in error performance and controller effort.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Naval weapons systems of the Republic of Korea are acquired through the Defense Planning Management System. Recently, acquisition of some naval ships have been delayed, and the causes of the delays have been recognized as inappropriate project management at the Execution Phase. However, we argue that the delay problem in naval ships acquisition should be approached, with due regard for the entire Defense Planning Management System. That is, We should try to investigate from Planning Phase to those of Programming, Budgeting and Execution Phases. Therefore, in this study, we investigated the actual cases of the delay in naval acquisition at all phases of the Defense Planning Management System. Based on the investigation, we tried to identify the naval ship Acquisition Delay Factors and find out the Weights of those factors. As the next step, we calculated the Influence Measures on the naval missions, including the Cost of Naval Capability Gap derived from the delays in acquisition of naval ships. As a final step, we calculated the Acquisition Delay Measures based on the interrelationship between the Acquisition Delay Factors and the Influence Measures. Then we evaluated and analyzed what the results stand for. Finally, we made suggestions for future improvement. The improvement suggestions we made for preventing delay in acquisition of naval ships in this study are as follows. First, we need a shift in perception. It is necessary to measure the Acquisition Delay Factors in acquiring naval ships and manage them from the Planning Phase. Second, resolution must be concerted efforts. All relevant agencies, not just a few, should work together to resolve the problems of acquisition delay. Third, analysis must be based on the accumulation of data. This allows the elaborating of naval ship Acquisition Delay Factors and Delay Measures. If this research method is applied to other military weapons systems in the future, we may be able to not just identify the Acquisition Delay Factors in acquisition of other military weapons systems, but also pursue improvement in those cases.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In a series of recent launch tests, North Korea has been improving the firepower of its missiles that can target South Korea. North Korea’s missiles and submarines are capable of threatening targets in South Korea and are likely faster and more covert than the systems previously seen in North Korea. The advanced threats require that ROK Navy should not only detect them earlier than ever but also response quicker than ever. In addition to increasing threats, the number of young man that can be enlisted for military service has been dramatically decreasing. To deal with these difficulty, ROK navy has been making various efforts to acquire a SMART warship having enhanced defense capability with fewer human resources. For quick response time with fewer operators, ROK Navy should improve the efficiency of systems and control tower mounted on the ship by promoting the Ship System Integration. Total Ship Computing Environment (TSCE) is a method of providing single computing environment for all ship systems. Though several years have passed since the first proposal of TSCE, limited information has been provided and domestic research on the TSCE is still in its infancy. In this paper, we apply TSCE with open architecture (OA) to solve the problems that ROK Navy is facing in order to meet the requirements for the SMART ship. We first review the level of Ship System Integration of both domestic and foreign ships. Then, based on analyses of integration demands for SMART warship, we apply real time OA to design architecture for TSCE from functional view and physical view. Simulation result shows that the proposed architecture has faster response time than the response time of the existing architecture and satisfies its design requirements.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters’ posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.
        2019.05 구독 인증기관 무료, 개인회원 유료
        It is difficult to apply the ram target value setting methods of the conventional weapon system to a large combined weapon system such as a submarine. The current study presents the case of weapon system development and suggests a new way to improve the setting and verification methods of ram target value of the submarine through critical review of the case. The submarine, unlike other weapon system, has an operating environment, which reaches all over the world, and its operating and maintenance conditions are different from others. Therefore, the ram target value of the submarine should be set and verified on the basis of mission essential equipment and mission critical equipment, not of all the constituent components.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 해상 교통 환경의 변화로 인해 해군함정 사고가 지속적으로 발생하고 있으며, 특히 2017년 미 해군 구축함 사고로 인해 심각한 인명피해가 발생하였다. 이에 본 연구에서는 해군 교육 자료, 해군함정 사고 재결서, 미구축함 사고 분석 보고서의 해군함정 사고사례를 이용해 해군함정 사고를 분석하고 시나리오를 구축하였다. 이를 위해 조사한 자료를 중심으로 함정 사고 현황을 파악하고 사고사례를 분석하였다. 사고재현 절차에 따라 사고사례 17건을 재현하고 해군함정 사고 시나리오를 구축하였다. 해군함정 사고 17건의 CPA, TCPA 및 PARK 모델 위험도 분석 결과, 충돌위험은 평균적으로 사고발생 5~6분 전을 기준으로 증가하는 것으로 분석되었다. 본 연구의 결과를 해군 사례 교육 및 시뮬레이션 교육의 시나리오 기초자료로 제공하여 해양사고 예방에 기여하고자 한다.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        긴급하거나 광역으로 발생한 해상유류오염사고에는 방제정만으로 대응하기에는 한계가 있어서, 해양경찰청 경비함정도 방제 작업에 동원된다. 본 연구에서는 소형 경비함정에 적합한 유흡착장비를 개발하였다. 장비는 고정지지대, 폴대, 슬라이드고정부 3개 부속품으로 구성되어 용접 또는 추가 구조물 설치 없이 소형 경비함정 현측 추락방지봉에 간단하게 토글핀으로 결속하는 방식으로 장착 및 분리가 가능하다. 각 부속품의 무게는 고정지지대 약 9.2 kg, 폴대(2개) 약 6.5 kg, 슬라이드 고정부(4개) 약 3.5 kg이며, 좌·우 180°로 원활하게 움직이는 길이 3 m의 폴대는 갑판 방향으로 접어서 유흡착재 교체작업을 할 수 있다. 본 장비의 개발로 소형 경비함정에서 유흡착재의 투입 및 수거가 용이한 방법으로 개선되어 보다 효율적인 방제작업이 가능할 것으로 판단된다.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        함정 외부 탑재 장비의 복잡한 형상에 의해서 발생하는 다중반사는 경로를 예측하기 어렵고 높은 RCS(Radar Cross Section) 의 원인이 된다. 따라서 함정의 외부 탑재 장비의 최적배치 설계가 RAS(Radar Absorbing Structure) 방법으로 고려되어야 한다. 본 논문에 서는 함정 외부 탑재 장비에서 발생하는 다중반사와 RCS를 최소화하기 위하여 함정 외부 탑재 장비 최적배치를 수행하였다. 외부 탑 재 장비 최적배치에 사용된 알고리즘은 순차적 내림차순 방법을 이용하였다. 함정 외부 탑재 장비 최적배치를 수행하기 위하여 LCS-2 type을 해석 모델로 선정하였다. 계산 비용을 줄이기 위해서 장비의 기여도 분석 및 다중반사 경로 분석 등을 통해 최적 배치를 수행 할 장비를 선정하였고 최적배치를 통해 RCS가 최소가 되는 최적배치 위치를 도출하였다. 또한 RCS 변화에 따른 레이다의 탐지거리 변 화율을 이용하여 RCS 감소효과를 분석 하였다.
        1 2 3