선박은 화물 운송의 효율을 증대시키기 위해 대형화되는 추세이다. 선박 대형화는 선박 작업자의 이동시간 증가, 업무 강도 증가 및 작업 효율 저하 등으로 이어진다. 작업 업무 강도 증가 등의 문제는 젊은 세대의 고강도 노동 기피 현상과 맞물러 젊은 세대의 노동력 유 입을 감소시키고 있다. 또한 급속한 인구 노령화도 젊은 세대의 노동력 유입 감소와 복합적으로 작용하면서 해양산업 분야의 인력 부족 문 제는 극심해지는 추세이다. 해양산업 분야는 인력 부족 문제를 극복하기 위해 지능형 생산설계 플랫폼, 스마트 생산 운영관리 시스템 등의 기술을 도입하고 있으며, 스마트 자율물류 시스템도 이러한 기술 중의 하나이다. 스마트 자율물류 시스템은 각종 물품들을 지능형 이동로봇 을 활용하여 전달하는 기술로서 라이다, 카메라 등의 센서를 활용해 로봇 스스로 주행이 가능하도록 하는 것이다. 이에 본 논문에서는 이동 로봇이 선박 갑판의 통행로를 감지하여 stop sign이 있는 곳까지 자율적으로 주행할 수 있는지를 확인하였다. 자율주행은 Nvidia의 End-to-end learning을 통해 학습한 데이터를 기반으로, 이동로봇에 장착된 카메라를 통해 선박 갑판의 통행로를 감지하여 수행하였다. 이동로봇의 정지 는 SSD MobileNetV2를 이용하여 stop sign을 확인하여 수행하였다. 실험은 약 70m 거리의 선박 갑판 통행로를 이동로봇이 이탈 없이 주행 후 stop sign을 확인하여 정지하는지를 5회 반복 실험하였으며, 실험 결과 경로이탈 없이 주행하는 결과를 얻을 수 있었다. 이 결과를 적용한 스 마트 자율물류 시스템이 산업현장에 적용된다면 작업자가 작업 시 안정성, 노동력 감소, 작업 효율이 향상될 것으로 사료된다.
In this paper, we design a basic algorithm enabling recognition of surrounding environment and collision avoidance among elemental technologies for autonomous driving, also applies sensor theoretical data and actual road performance to robo-racing system based on experimental data obtained through driving tests to enable sophisticated collision avoidance. For this study, a commercial autonomous driving patform(ERP-42), LiDAR and GPS sensors were used to implement efficient comunication systems and autonomous driving algorithms between each module.
This study attempts to analyze the economic impact of the service robot industry using Input-Output analysis, which is conducted based on Demand-driven model, the Leontief price model, the Backward and Forward Linkage Effects, and the Exogenous Methods. In a Demand-driven model analysis, we can conclude that the service robot industry contains characteristics of both the manufacturing industry and the service industry, which causes a positive impact on the overall industry by compensating for the weaknesses of the two industries. The Leontief price analysis indicates when wages in the service robot industry increase, prices related to robot manufacturing also increase. Also, when profits in the service robot industry increase, prices related to service provision increase, too. The Backward and Forward Linkage Effects analysis shows that the service robot industry is highly sensitive to the current economic condition and has a great influence on the service industry. The service robot industry can highlight the aspect of service characteristics when the manufacturing industry is in recession and vice versa. In addition, the service robot industry can be regarded as a value-adding and domestic economy promoting industry which utilizes knowledge of information and communication technologies. It is important to foster the service robot industry in South Korea, which is in economic recession to provide an opportunity to stimulate the growth of both service and robot industries.
The paint removal of fighter jets is just as important as the painting, because perfect paint removal ensures the quality of the exterior painting on the aircraft. However, the current conditions for paint removal work of the ROKAF’s are poor. It is identified that the painting process currently implemented by the ROKAF is not only exposed to harmful compounds such as harmful dust and hexavalent chromium, but also consumes a lot of water. Thus, the introduction of advanced facility is considered. This study compares the fighter jets painting removal process currently applied by the Korean Air Force with the improved laser coating removal process of the US Air Force, and conducts an incremental analysis to perform economic analysis for the introduction of advanced facility. Four scenarios were envisioned on the premise of an increase in the number of fighters in the future, incremental analysis shows that laser coating removal method is advantageous in all scenarios. In addition, it is recommended that paint removal cycle keeps the current 12-year and the outsourcing amount to civilian depot is reduced.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on indoor mobile robot position recognition and driving experiment using QR Code during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on the driving control of indoor mobile robot during the development of QR Code-aware indoor mobility robots.
기술의 발전으로 스마트 선박과 관련된 다양한 연구가 진행되고 있으며, 기관실을 무인으로 순찰할 수 있는 기관실 순찰 로봇 도 이러한 연구 중의 하나이다. 순찰로봇은 인공지능을 통해 학습된 정보를 기반으로 기관실을 이동하며 기기 정상 유무 및 누수, 누유, 화재 등의 이상 유무를 파악한다. 기관실 순찰로봇에 관한 연구는 인공지능을 이용한 객체 검출에 관한 연구가 주로 진행되고 있으나, 순 찰로봇의 이동 및 제어에 관한 연구는 부족한 상황이다. 이는 순찰로봇이 객체를 검출하더라도 검출한 객체까지 이동할 방법이 없다는 문제를 야기한다. 이에 본 논문에서는 기관실 이상상황 발생 시 빠르게 이상 유무를 파악할 수 있는 기동성을 확보하기 위해, A* 알고리 즘을 적용하여 순찰로봇이 최단경로를 탐색할 수 있는지를 확인하였다. 라이다를 장착한 소형차를 이용하여 선박 기관실을 주행하며 데 이터를 얻어, SLAM으로 매핑하여 지도를 만들었다. 매핑한 지도에서 순찰로봇의 출발 지점과 목표 지점을 설정하고, A* 알고리즘을 적용 하여 출발 지점부터 목표 지점까지 최단 경로를 탐색하는지를 확인하였다. 시뮬레이션 결과 매핑된 지도에서 출발 지점부터 목표 지점까 지의 장애물을 회피하며 최단 경로를 잘 탐색함을 확인 할 수 있었으며, 기관실 순찰로봇에 적용하면 선박안전에 도움이 될 것으로 사료 된다.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on experimental environments for testbeds during the development of QR Code-aware indoor mobility robots.
This study analyzed the wake characteristics of the rim-driven propeller (RDP) used in an underwater robot. For underwater robots to perform specific missions, not only propulsion characteristics but also wake characteristics must be considered. In this study, a blade was designed based on NAC 0012 with a symmetrical cross-section. The RDP was hubless with three or four blades. The influence of both the free water surface and the bottom was considered, and the wake was measured using a particle image velocimetry in the advance ratio of 0.2 to 1. Model 1 showed symmetrical wakes in the entire advance ratio section. Model 2 showed asymmetric wakes due to the influence of the free water surface and the bottom at low advance ratio.
의인화는 로봇과 같이, 인간이 아닌 대상에게 인간의 속성, 정서나 의도를 부여하는 것이다. 본 연구에서는 로봇에 게 인간 고유의 속성을 부여하는 의인화가 로봇-인간의 상호작용에 끼치는 영향을 분석하였다. 연구 1에서는 다양한 로봇의 사진을 제시하고, 로봇의 외관에 따른 심리적 불쾌감, 마음지각 및 도덕적 처우를 자기보고식 질문지를 통해 분석하였다. 그 결과 로봇의 외관이 인간과 가장 유사한 안드로이드 로봇조건에서 휴머노이드 로봇의 조건과 기계적 외관의 조건보다 로봇에 대한 심리적 불쾌감이 가장 높았다. 또한 인간과 유사한 안드로이드 로봇에서 기계와 비슷 한 로봇보다 로봇에 대한 마음지각이 더 높게 나타났다. 연구 2에서는 로봇의 속성을 의인화한 조건과 의인화하지 않은 조건에서 로봇에 대한 불쾌감, 마음지각과 도덕적 처우의 정도가 다르게 나타나는지를 비교하였다. 그 결과 로봇 속성의 의인화조건에서 로봇에 대한 마음지각과 도덕적 처우의 정도가 더 높게 나타났으며, 마음지각의 경험성 이 높을수록 도덕적 처우의 정도가 더 높아졌다. 이 결과는 인간과 유사한 로봇의 외관은 로봇에 대한 심리적 불쾌감 을 증가시키지만, 로봇의 속성에 대한 의인화는 로봇에 대한 마음지각을 증가시키고, 인간-로봇의 상호작용을 촉진 시킬 가능성을 제시한다. 논의에서는 의인화가 인간-로봇의 상호작용에 끼치는 차별화된 영향에 대한 시사점을 토론 하고, 연구의 한계 및 후속연구의 방향을 다루었다.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the driving directions of QR Code-aware movable robots during the development of QR Code-aware indoor mobility robots.
In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.