In our previous studies, the cardiac xenotransplantation from an alpha-1,3-galactosyltransferase knockout pig (GT-MCP-MCP) to cynomolgus monkeys showed a mean survival of 38 days. The objective of this study is to genetically upgrade the GT-MCP-MCP pig, to further enhance membrane cofactor protein (MCP) expression and to express an endothelial specific thrombomodulin (TBM). MCP is a complement regulatory protein and TBM is a coagulation inhibitor. As the dicistronic cassette for wild-type-based MCP and TBM concurrent expressions does not show any increase of MCP, we optimized the MCP codon usage (mMCP) and substituted mMCP for MCP. When the mMCP-TBM cassette was transfected to HeLa cells, we were able to find an increased expression of MCP and endothelial cell-specific TBM expression. The cassette was then transfected into ear-skin fibroblasts isolated from one-month-old #23-4 of a GT-MCP-MCP pig, and the cell populations expressing MCP were obtained by MACS cell sorting. We performed a single cell culture of the selected cells, and obtained clones over expressing 90% MCP. The cells of a clone were used as a donor for nuclear transfer and generated GT-MCP/-MCP/mMCP/TBM pig. The transgenic pig was confirmed to be carrying the cells expressing MCP and functioning as an inhibitor against the cytotoxic effect of normal monkey serum, comparable with donor cells. Thus, we believe that the GT-MCP/-MCP/mMCP/TBM transgenic pig would be potential for the prolongation of xenograft survival in the recipients.
Acute vascular rejection has been known as a main barrier occurring in a xenograted tissue of alpha 1,3-galactosyltransferase knock-out (GalT KO) pig into a non-human primate (NHP). Adenosine which is a final metabolite following sequential hydrolysis of nucleotide by ecto-nucleotidases such as CD39 and CD73, act as a regulator of coagulation, and inflammation. Thus xenotransplantation of CD39 and CD73 expressing pig under the GalT KO background could lead to enhanced survival of recipient NHP. We constructed a human CD39 and CD73 expression cassette designed for endothelial cell-specific expression using porcine Icam2 promoter (pIcam2-hCD39/hCD73). We performed isolation of endothelial cells (pAEC) from aorta of 4 week-old GalT KO and membrane cofactor protein expressing pig (GalT-MCP/-MCP). We were able to verify that isolated cells were endothelial-like cells using immunofluorescence staining analysis with von Willebrand factor antibody, which is well known as an endothelial maker, and tubal formation assay. To find optimal condition for efficient transfection into pAEC, we performed transfection with GFP expression vector using four programs of nucleofection, M-003, U-023, W-023 and Y-022. We were able find that the program W-023 was optimal for pAEC with regard to viability and transfection efficiency by flow cytometry and fluorescent microscopy analyses. Finally, we were able to obtain GalT-MCP/-MCP/CD39/CD73 pAEC expressing CD39 and CD73 at levels of 33.3% and 26.8%, respectively. We suggested that pACE isolated from GalT-MCP/-MCP pig might be provided as a basic resource to understand biochemical and molecular mechanisms of the rejections and as an alternative donor cells to generate GalT-MCP/-MCP/CD39/CD73 pig expressing CD39 and CD73 at endothelial cells.
Tissue engineering (TE) has been developed to create functional organs and tissue by combining 3D matrix and cells in vitro. Vascularization and angiogenesis are utmost important for supply of nutrients and oxygen in tissue engineered organs. The present study was performed to isolate and characterize primary endothelial cells (EC) from aorta of alpha 1, 3-enzyme galactosyltransferase knock out (GalT KO) pig, to minimize immune rejection and analyze body immune system for future xenotransplantation studies. Isolation of primary EC from aorta were performed by incubation with dispase for 8-10 min at 37°C. Primary EC were cultured in EC growth medium on different extra cellular matrix (ECM), either collagen or gelation. Primary EC exhibits morphological characteristics and showed positive expressions of EC specific marker proteins i.e. PECAM1, KDR and VWF despite of their ECM surface; however, on collagen based surface they showed increase in mRNA level analyzed by qPCR. Primary EC cultured on collagen were sorted by flow cytometer using KDR marker and cultured as KDR positive cells and KDR negative cells, respectively. KDR positive cells showed dramatically increased in PECAM1 and VWF level as compared to KDR negative cells. Based on the above results, primary EC derived from GalT KO are successfully isolated and survived continuously in culture without becoming overgrown by fibroblast. Therefore, they can be utilize for xeno organ transfer, tissue engineering, and immune rejection study in future.
Transplantation is considered to be a very useful approach to improve human welfare and to prolong life-span. Heterologous organ transplantation using pig organs which are similar to human beings and easy to make mass-production has known as one of the alternatives. To ensure potential usage of the pig organ for transplantation application, it is essentially required to generate transgenic pig modifying immuno-related genes. Previously, we reported production of heterozygous α 1,3-galactosyltransferase (GalT) knock-out and human membrane cofactor protein (MCP) expressing pig (GalT-MCP/+), which is enforced for suppression of hyperacute and acute immunological rejection. In this study, we reported generation of homozygous pig (GalT-MCP/-MCP) by crossbreeding GalT-MCP/+ pigs. Two female founders gave birth to six of GalT-MCP/-MCP, and seven GalT-MCP/+ pigs. We performed quantitative real-time PCR, western blot, and flow cytometry analyses to confirm GalT and MCP expression. We showed that fibroblasts of the GalT-MCP/-MCP pig do not express GalT and its product Gal antigen, while efficiently express MCP. We also showed no expression of GalT, otherwise expression of MCP at heart, kidney, liver and pancreas of transgenic pig. Taken together, we suggest that the GalT-MCP/-MCP pig is a useful candidate to apply xenotransplantation study.
It is very difficult to get the information about semen quality analysis in transgenic pigs because of limited numbers and research facilities. Therefore, in the present study, we analyzed the semen quality of transgenic boars generated for xenotransplantation research. Briefly, the semen samples were collected from 5 homozygous α1,3-Galactosyltransferase knock-out (GalT-/-) transgenic boars and immediately transported to the laboratory. These semen samples were decupled with DPBS and conducted to analyze semen parameters by a computer-assisted semen analysis (CASA) system. The boar semen were examined all 12 parameters such as total motility (TM), curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), and hyperactivated (HYP), etc. In results, among the 5 GalT-/- boars, three boars (#134, 144, and 170) showed normal range of semen parameters, but #199 and 171 boars showed abnormal ranges of semen parameters according to standard ranges of semen parameters. Unfortunately, #171 boar showed azoospermia symptom with rare sperm counts in the original semen. Conclusively, assessment of semen parameters by CASA system is useful to pre-screening of reproductively healthy boar prior to natural mating and artificial insemination for multiplication and breeding.
돼지의 장기를 영장류에 이식할 때 단시간 내에 발생하는 초급성 면역거부반응 문제를 해결하기 위해 이를 제어할 수 있는 alpha1,3-galactosyltransferase knock out (Gal-T-/-) 돼지를 생산하였다. 그럼에도 불구하고 그 심장을 이식을 받은 영장류가 사망하는 것으로 보고되었으며, 그 원인은 non-Gal 항원-항체 반응에 의한 면역반응과 돼지와 영장류 간 분자, 생리적 차이에 의해 발생하는 급성 체액성 거부반응 때문이라고 알려져 있다. 본 연구는 어떤 인자와 기전에 의해 이식된 장기가 손상되고 사망하게 되는지 분자 수준에 서 알아보기 위하여, 영장류에 이식한 Gal-T-/- 돼지 심장에서 유전자의 발현 변화를 분 석하였다. 이를 위해 동일 부모에서 태어난 Gal-T-/- 돼지의 이식에 활용하지 않은 심장 을 대조군으로 하여 cynomolous 원숭이에 이식 후 9일째 채취한 심장으로부터 총 RNA 를 추출한 후 Sequencing을 통해 전 돼지 유전자의 발현수준을 비교하였다. 분석 결과, 이식된 심장에서 1292개의 유전자 발현이 유의적으로 증가하였고, 949개는 유의적으로 감 소하는 것으로 분석되었다. 이 중에서 심근 경색 등과 같이 심장이 손상되면 발현이 증가 하는 matricellular 단백질 유전자인 tenascin C(23.7배), Tsp-1(13.9배), -2(5.8배), -4(6.6 배), SPARC(3.6)의 발현이 증가한 것으로 분석되었다. 특히 혈관에서 혈액 응고를 촉진 시킨다고 알려진 Tsp-1의 발현이 유의하게 증가한다는 것을 quantitative RT-PCR 분석 으로 확인하였다. 또한 혈액응고의 중요한 조절 인자인 TF의 발현이 증가한 반면 억제 인자인 TFPI와 TBM의 발현은 변화가 없다는 것을 확인하였다. 이러한 결과는 이식 과 정 중에 가해진 생리적 또는 물리적 손상 및 원숭이 혈액의 재관류 자극에 의해 심장의 기능 마커 유전자가 지속적으로 발현되는 것으로 예측된다.
The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is responsible for hyperacute rejection (HAR) during transgenic pig-to-non-human primate xenotransplantation. There are genes related to the expression of α-Gal epitope such as α1,3Galactosyltransferase gene (GT-/-) and the isoglobotrihexosylceramide synthase (iGb3s-/-). This study was performed to investigate the expression of α-Gal epitope in the skin derived from GT-/- transgenic pig. The skin (7/1000 inches) was obtained by dermatome (Zimmer® Electric Dermatome) from one month old of wildtype (WT) and GT-/- piglets, respectively. The skins were fixed, dehydrated, cleaned, and embedded. To analyze the expression of α-Gal epitope, the paraffin section of WT and GT-/- were stained with BS-IB4 lectin and isoglobotrihexosylceramide synthase antibody. There was a strong BS-IB4 lectin signal in the skin of WT, but not detected in GT-/-. However, the iGb3s positive signals were stained in the skin of both WT and GT-/-. Taken together, it can be postulated that the knocked out of GT gene may not enough to inhibit the expression of α-Gal epitope. Further studies are needed to evaluate the functions of the double knock out of GT and iGb3s on the expression of α-Gal epitope.
To overcome the hyperacute immune rejection during pig-to-non-human primates xenotranasplantation, we have produced and bred α-1,3-galactosyltransferase knock-out (GalT —/—) pigs. In this study, the somatic cells and tissues from the GalT —/— pigs were characterized by an analysis of the expression of Galα-1,3-Gal (α-Gal) epitope. Briefly, ear fibroblast cell lines of 19 homozygous GalT —/— pigs were established and cryopreserved. The expression of α-Gal epitope in the cells was measured by fluorescence activated cell sorter (FACS) analysis using BS-I-B4 lectin. Also, the homozygous (GalT —/—) cells and tissues samples were immunostained with BS-I-B4 lectin for analysis of α-Gal epitope expression. The results showed that the expression of α-Gal epitope in GalT —/— cells (0.2 %) were significantly (p< 0.05) down-regulated to the range of cynomolgus monkey fibroblast (0.2 %) cells compared to heterozygous (GalT —/+) (9.3 %) and wild type (GalT +/+) (93.7 %) fibroblast cells. In the immunostaining results, while the expression of α-Gal epitope was detected a partly in GalT —/+ cells and mostly in GalT +/+ cells, it was almost not detected in the GalT —/— cells. Also, immunostaining results from various tissues of the GalT —/— pig showed that the expression of α-Gal epitope was not detectable, whereas various tissues from GalT +/+ pig showed a strong expression of α-Gal epitope. Our results demonstrated that α-Gal epitope expressions from GalT —/— pigs were successfully knocked out to prevent hyperacute immune rejection for further study of xenotransplantation.
Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of β-cells, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from α-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3∼4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in β-cell replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.
동물의 장기를 인간에게 이식하게 되면 초급성거부반응(Hyperacute rejection, HAR)이 일어난다. 초급성거부반응은 면역계의 구성요소 중 보체(complement)에 의해 일어나는 거부반응으로 돼지의 혈관세포 표면에 있는 Galα(1,3)Gal 당분자에 인간의 항체가 즉각 반응하기 때문에 일어나며, α1,3-galactosyltransferase(α1,3-GT) 유전자는 돼지 혈관세포 표면의 Galα(1,3)Gal 당분자 생성에 관여한다. 따라서 인간에게 돼지의 장기를 이식하기 위해서는 α1,3-galactosyltransferase 유전자를 제거하는 것이 필요한 것으로 알려져 있다. 본 연구실의 이전 연구에서, 시카고 미니돼지 귀체세포에서 상동 재조합(Homologous recombination)을 통해 α1,3-galactosyltransferase 유전자가 제거된 체세포를 개발한 바 있으며, 이 체세포를 통하여 α1,3-GT 유전자가 제거된 돼지도 생산된 바 있다. 본 연구에서는, human serum 처리 시 돼지 세포를 보호해 준다고 보고되고 있는 human complement regulator인 human Decay-accelerating factor(hDAF)와 human α1,2-fucosyltransferase(hHT)유전자를 α1,3-GT 유전자 위치에 gene targeting하여 동시에 hDAF와 hHT가 발현하는 체세포를 개발하였다. Knock-in vector는 hDAF와 hHT 두 유전자가 발현할 수 있도록 IRES로 연결하였으며, α1,3-GT 유전자의 start codon을 이용하여 발현할 수 있도록 구축하였다. 구축한 vector는 electroporation을 통해 미니돼지 체세포에 도입하였으며, PCR 결과, α1,3-GT 유전자 위치에서 상동 재조합이 일어났음을 확인하였다. Positivenegative 선별 방법을 통해 얻은 gene targeting 된 체세포는 RT-PCR에 의해 hDAF와 hHT 유전자의 발현이 확인되었으며, 대조군(NIH minipig)에 비해 α1,3-GT 유전자의 발현이 감소하였다. 또한 이들 세포에 100% human complement serum을 처리하였을 때 knock-in 세포가 대조군에 비해 30% 정도 더 높은 생존율을 보였다. 따라서 개발된 체세포는 이종간 장기이식을 위한 돼지 생산과 함께 이를 이용한 이종간의 장기 이식 시 초급성 거부반응을 억제하는 데 사용될 수 있을 것으로 생각된다.
The current study was conducted to evaluate the biocompatibility of α-1,3 galactosyltransferase knockout pig bone graft in a rat calvarial defect model. Porcine cancellous bones were harvested from general and alpha-gal KO pigs and washed with 70% ethanol solution and normal saline. Bone pieces of the alpha-gal KO pig underwent a chemical treatment process to delipidize and deproteinize the bone. Bone graft particles were freeze-dried and stored at −70°C until use. Each bone graft was implanted into the rat calvarial defect in a fresh general pig, fresh transgenic pig, and chemical-treated pig bone group. There was no systemic adverse effect on hematology or necropsy findings in all groups at 1 week and 4 weeks. In the microcomputed tomography analysis, bone volume increased significantly in the chemical-treated transgenic pig bone group, whereas bone mineral density decreased significantly in the fresh general pig bone group compared with other groups. Histological evaluation showed cellular infiltration located at the margin of the bone graft particles, especially in the fresh general pig bone group. These results indicate that fresh general pig bone can elicit a greater local inflammatory response than fresh transgenic pig bone. Further, chemical-treated transgenic pig bone graft was less immunogenic than fresh bone graft. In conclusion, transgenic pig bone is a more biocompatible graft material. In addition, chemical treatment can reduce bone graft immunogenicity by delipidizing and deproteinizing bone.
Xenotransplantation of pig organs into primates results in fatal damage, referred as hyperacute rejection (HAR), and acute humoral xenograft rejection (AHXR), to the organ graft mediated by antibodies pre-existing and newly-producing in primates against their cognate pig antigens. Functional ablation of α1,3-galactosyltransferase (Gal-T KO) of pig which is an enzyme involved in synthesis of Gala1-3Galb1-4GlcNAc-R antigen is essentially required to prevent HAR. Moreover, additional genetic modification under Gal-T KO background for enforced expression of human complement regulatory proteins which can inhibits complement activation is known to effectively imped HAR and AHXR. In this study, we constructed a membrane cofactor protein (MCP) expression cassette under control of human EF1α promoter. This cassette was inserted between homologous recombination regions corresponding to Gal-T locus. Subsequently this vector was introduced into ear skin fibroblasts of female pig by nucleofection. We were able to obtained 40 clones by neomycin selection and 4 clones among them were identified as clones targeted into Gal-T locus of MCP expression cassette by long-range PCR. Real time RT-PCR was shown to down-regulation of Gal-T expression. From these results, we demonstrated human EF1α promoter could induce efficient expression of MCP on cell surface of fibroblasts of female pig.
A major barrier to progress in pig to primate organ transplantation or cell therapy is the presence of terminal α -1,3-galactosyl epitopes on the surface of pig cells. Therefore, the purpose of this experiment was to establish and cha- racterize mesenchymal stromal/stem cells (MSCs) derived from α-1,3-galactosyltransferase (GalT) knock out (GalT KO) pig to confirm their potential for cell therapy. Bone marrow (BM)-MSCs from GalT KO pig of 1 month old were isolated by Ficoll-Paque PLUS gradient and cultured with A-DMEM + 10% FBS on plastic dishes in 5% CO2 incubator at 38.5. GalT KO BM-MSCs were analyzed for the expression of CD markers (CD45-, 29+, 90+ and 105+) and in vitro differentiation ability (adiopogenesis and osteogenesis). Further, cell proliferation capacity and cell aging of GalT KO BM-MSCs were compared to Wild BM-MSCs by BrdU incorporation assay (Roche, Germany) using ELISA at intervals of two days for 7 days. Finally, the cell size was also evaluated in GalT KO and Wild BM-MSCs. Statistical analysis was performed by T-test (P<0.05). GalT KO BM-MSCs showed fibroblast-like cell morphology on plastic culture dish at passage 1 and exhibited CD45-, 29+, 90+ and 105+ expression profile. Follow in ginduction in StemPro adipogenesis and osteogenesis media for 3 weeks, GalT KO BM-MSCs were differentiated into adipocytes, as demonstrated by Oilred Ostaining of lipid vacuoles and osteocytes, as confirmed by Alizarinred Sstaining of mineral dispositions, respectively. BrdU incorporation assay showed a significant decrease in cell proliferation capacity of GalT KO BM-MSCs compared to Wild BM-MSCs from 3 day, when they were seeded at 1×103 cells/well in 96-well plate. Passage 3 GalT KO and Wild BM-MSCs at 80% confluence in culture dish were allowed to form single cells to calculate cell size. The results showed that GalT KO BM-MSCs (15.0 ± 0.4 μm) had a little larger cell size than Wild BM-MSCs (13.5 ± 0.3 μm). From the above findings, it is summarized that GalT KO BM-MSCs possessed similar biological properties with Wild BM-MSCs, but exhibited a weak cell proliferation ability and resistance to cell aging. Therefore, GalT KO BM-MSCs might form a good source for cell therapy after due consideration to low proliferation potency in vitro.
동물의 장기를 인간에게 이식하게 되면 초급성거부반응(Hyperacute rejection, HAR)이 일 어난다. 초급성거부반응은 면역계의 구성요소 중 보체(complement)에 의해 일어나는 거부 반응으로 돼지의 혈관세포 표면에 있는 Galα(1,3)Gal 당분자에 인간의 항체가 즉각 반응하 기 때문에 일어나며, α1,3-galactosyltransferase(α1,3-GT) 유전자는 돼지 혈관세포 표면의 Galα(1,3)Gal 당분자 생성에 관여한다. 따라서 인간에게 돼지의 장기를 이식하기 위해서는 α1,3-galactosyltransferase 유전자를 제거하는 것이 필요한 것으로 알려져 있다. 본 연구 실 의 이전 연구에서, 시카고 미니돼지 귀체세포에서 상동 재조합(Homologous recombination) 을 통해 α1,3-galactosyltransferase 유전자가 제거된 체세포를 개발한 바 있으며, 이 체세 포 를 통하여 α1,3-GT 유전자가 제거된 돼지도 생산된 바 있다. 본 연구에서는, Human serum 처리 시 돼지 세포를 보호해준다고 보고되고 있는 human complement regulator인 human Decay-accelerating factor(hDAF)와 human α1,2-fucosyltransferase(hHT) 유전자를 α1,3 -GT 유전자 위치에 gene targeting하여 동시에 hDAF와 hHT가 발현하는 체세포를 개발하였다. Knock-in vector는 hDAF와 hHT 두 유전자가 발현할 수 있도록 IRES로 연결하였으며 α 1,3-GT 유전자의 start codon을 이용하여 발현할 수 있도록 구축하였다. 구축한 vector는 electroporation을 통해 미니돼지 체세포에 도입하였으며, PCR 결과 α1,3-GT 유전자 위치 에 서 상동 재조합이 일어났음을 확인하였다. Positive-negative 선별 방법을 통해 얻은 gene targeting된 체세포는 RT-PCR에 의해 hDAF와 hHT 유전자의 발현이 확인되었으며, 대조군 (NIH minipig)에 비해 α1,3-GT 유전자의 발현이 감소하였다. 또한, 이들 세포에 100% human complement serum을 처리하였을 때 Knock-in 세포가 대조군에 비해 30% 정도 더 높 은 생존율을 보였다. 따라서 개발된 체세포는 이종간 장기이식을 위한 돼지 생산과 함께 이를 이용한 이종간의 장기 이식 시 초급성 거부반응을 억제하는 데 사용 될 수 있을 것으로 생각된다.
This study was conducted to analyze the transgenic efficiency and sex ratio in -1,3-galactosyltransferase (GalT) knock-out (KO) transgenic pigs according to generation. GalT KO piglets were produced by artificial insemination or natural mating. The transgenic confirmation of GalT KO was evaluated by PCR amplification using specific primers. After electrophoresis, three types of bands were detected such as 2.3 kb single band (Wild), 2.3 and 3.6kb double bands (GalT KO -/+; heterozygote), and 3.6kb single band (GalT KO -/-; homozygote). Transgenic efficiency in F1 generation was 64.5% (23/35) of GalT KO (-/+). In F2 generation, GalT KO transgenic efficiency was 36.4% (21/57, Wild), 47.5% (28/57, GalT KO -/+), and 16.1% (8/57, GalT KO -/-), respectively. Interestingly, no homozygote piglets were born in 6 deliveries among total 11 deliveries, although they were pregnant between male (M) and female (F) heterozygote. In the 5 litters including at least one GalT KO -/- piglet, the transgenic efficiency was 13.3% (2/24, Wild), 51.3% (14/24, GalT KO -/+), and 35.3% (8/24, GalT KO -/-), respectively. The sex ratio of M and F was 40:60 in and 49:51 in generation, respectively. Based on these results, GalT KO transgenic pigs have had a reproductive ability with a normal range of transgenic efficiency and sex ratio.
To avoid hyperacute rejection of xenografts, α1,3-galactosyltransferase knock-out (GalT KO) pigs have been produced. In this study, we examined whether Sia-containing glycoconjugates are important as an immunogenic non-Gal epitope in the pig liver with disruption of α1,3-galactosyltransferase gene. The target cells were then used as donor cells for somatic cell nuclear transfer (scNT). A total of 1,800 scNT embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. Real-time RT-PCR and glycosyltransferase activity showed that α2,3-sialyltransferase (α2,3ST) and α2,6-sialyltransferase (α2,6ST) in the heterozygote GalT KO liver have higher expression levels and activities compared to controls, respectively. According to lectin blotting, sialic acidcontaining glycoconjugate epitopes were also increased due to the decreasing of α-Gal in heterozygote GalT KO liver, whereas GalNAc-containing glycoconjugate epitopes were decreased in heterozygote GalT KO liver compare to the control. Furthermore, the heterozygote GalT KO liver showed a higher Neu5Gc content than control. Taken together, these finding suggested that the deficiency of GalT gene in pigs resulted in increased production of Neu5Gc-bounded epitopes (H-D antigen) due to increase of α2,6-sialyltransferase. Thus, this finding suggested that the deletion of CMAH gene to the GalT KO background is expected to further prolong xenograft survival.
Immunological rejection of the organ grafted onto a primate arises from two antibody mediated processes, hyperacute rejection (HAR) and acute humoral rejection (AHR). Functional ablation of α1,3-galactosyltransferase (GalT) and concurrently overexpression of complement regulatory proteins are known to inhibit HAR and AHR. In previous study, we reported that production of porcine male fibroblasts harboring a MCP expression cassette targeted to GalT locus. In this study, we constructed a different MCP expression cassette, in which the EF1α promoter regulates MCP expression and internal ribosome entry site-mediated neomycin resistance gene expression. Subsequently, this cassette was inserted between the left and the right homologous arms to target exon 9 of the GalT gene. Female fibroblasts were isolated from ear skin of 10 days old miniature pig, and used for nucelofection of the the construct for MCP expression at GalT locus. PCR analysis showed that four clones of forty neomycin resistant clones carry MCP expression cassette at exon 9 of the GalT gene. Two clones analyzed downregulated GalT expression, as determined by quantitative reverse transcriptase polymerase chain reaction. Flow cytometry analysis showed that MCP was efficiently expressed at the cell surface.
The purpose of this study was undertaken to evaluate of cryopreservation efficiency in α 1,3-galactosyltransferase knock-out(GalT KO) cloned miniature pig sperm. To compare ability of frozen-thawed sperm characteristics, three different pig strains (GalT KO) cloned miniature pig, PWG miniature pig and Duroc were used. The ejaculated semen from the three pig species was diluted with same volume extender and added to LEY solution for freezing. The diluted semen was placed in 0.5 ml straws, and freezing was initiated by exposing the straws to liquid nitrogen (LN2) vapours for 10 min before placing them into LN2 for cryopreservation. A fter thawing, the sperm ability were assessed for viability (SYBR-14/PI staining), abnormality (Rose Bengal staining), and acrosome status (intactness, intensity and capacitation) (chlorotetracycline, CTC staining). The viability of frozen-thawed GalT KO pig sperm had no significant difference as compared with Duroc and PWG miniature pig sperm. However, The CTC pattern of frozen-thawed GalT KO cloned miniature pig spermatozoa showed significantly lower rates in F pattern and AR pattern (p<0.05) and significantly higher rates in B pattern than Duroc and PWG miniature pig (p<0.05). The abnormality of GalT KO cloned miniature pig sperm was significantly lower as compared to Duroc and PWG miniature pig sperm (p<0.05). In conclusion, GalT KO cloned miniature pig semen can be cryopreserved successfully and used for artificial insemination reasonably.